Current Trends in Alum Treatment of Stormwater Runoff

9th Biennial Conference on Stormwater Research And Watershed Management

Harvey H. Harper, Ph.D., P.E. Environmental Research & Design, Inc.

Characteristics of Alum

-Clear, light green to yellow solution, depending on Fe content

-Liquid is 48.5% solid aluminum sulfate

-Specific gravity = 1.34

-11.1 lbs/gallon


-Freezing point = -15° C

-Delivered in tanker loads of 4500 gallons each

Alum is made by dissolving aluminum ore (bauxite) in sulfuric acid

Alum Reacts Quickly to Remove Both Particulate and Dissolved Pollutants

Colloidal Runoff Sample Settled for 45 Days

Immediately Following Alum Addition

Treated Sample 4 Hours After Alum Addition

The efficiency of alum treatment is a function of applied dose

Significant Alum Removal Processes

1. Removal of suspended solids, algae, phosphorus, heavy metals and bacteria:

 $AI^{+3} + 6H_2 \rightarrow AI(OH)_{3(s)} + 3H_3 \rightarrow 3H_3^{+}$

2. Removal of dissolved phosphorus: $AI^{+3} + H_n PO_4^{n-3} \iff AIPO_{4(s)} + nH^+$

Aluminum Coagulants

Aluminum Sulfate (alum) Aluminum Chloride Poly Aluminum Hydroxy-chloride Alum/Polymer Blends (floc logs)

Alum Coagulation

Advantages

- Rapid, efficient removal of solids, phosphorus, and bacteria Inexpensive – approximately \$0.60/gallon
- Relatively easy to handle and feed
- Does not deteriorate under long-term storage
- Floc is inert and is immune to normal fluctuations in pH and redox potential
- Floc also binds heavy metals in sediments, reducing sediment toxicity

<u>Disadvantage</u>

May result in lowered pH and elevated levels of Al⁺³ if improperly applied

Typical Analyses of Inorganic Coagulants

Metal Conc. (ppm)

<u>Element</u>	PACI	<u>Alum</u>	<u>Fe₂(SO₄)₃</u>	<u>FeCl</u> ₃
Silver	< 0.4	< 0.4	2	12
Barium	< 0.2	0.15	0.08	130
Cadmium	<0.05	<0.05	4.9	2
Cobalt	<0.08	0.15	12	38
Chromium	0.6	40	1.4	460
Copper	< 0.1	0.5	110	17
Manganese	1.1	1.5	79	5700
Nickel	1.0	0.3	10	15
Titanium	1.5	10	9.3	6600
Vanadium	0.5	15	110	690
Zinc	5.5	1.0	12	100
Lead	< 1	< 2	33	51
Arsenic	< 1	< 2	3	2
Mercury	< 0.002	< 0.002	2	5

SOURCE: WATER/Engineering & Management (Feb. 1998)

History of Alum Usage

Drinking water – Roman Times Wastewater – 1800s Lake surface – 1970 Stormwater - 1986

History of Chemical Stormwater Treatment

- Initial research on chemical coagulation conducted in the late 1970s – Evaluated salts of AI, Fe, and Ca
- Chemical coagulation evaluated for several stormwater retrofit projects in the early 1980s
- First system constructed at Lake Ella in Tallahassee in 1986
- Since then, 37 systems have been designed and constructed
- 11 additional systems are currently being designed or evaluated

Winter Haven (3) Orlando (4) Ocala Celebration La Porte, IN Cocoa Beach Pinellas Co. (8) Lake County St. Petersburg (6) Orange County King County, WA Polk County Brevard County Port Orange (2) Theme Park (2) Highlands Co. Winter Park (5) Tallahassee Largo SWFWMD (2) Hillsborough County Winter Garden NWFWMD

Typical Percent Removal Efficiencies for Alum Treated Stormwater Runoff

Parameter	Settled Without Alum (24 hrs)	Alum Dose (mg Al/liter)			
		5	7.5	10	
Diss. Organic N	20	51	62	65	
Particulate N	57	88	94	96	
Total N	20*	65*	71*	73*	
Diss. Ortho-P	17	96	98	98	
Particulate P	61	82	94	95	
Total P	45	86	94	96	
Turbidity	82	98	99	99	
TSS	70	95	97	98	
BOD	20	61	63	64	
Total Coliform	37	80	94	99	
Fecal Coliform	61	96	99	99	

* Depending on the type of nitrogen species present

Comparison of Treatment Efficiencies for Common Stormwater Management Systems

Turne of Suctor	Estimated Removal Efficiencies (%)			
Type of System	Total N	Total P	TSS	BOD
Dry Retention (0.50-inch runoff)	40-80 ¹	40-80	40-80	40-80
Wet Detention ²	20-30	60-70	75-85	65-70
Wet Detention with Filtration	20-30	60	> 90	80
Dry Detention	0-30	0-40	60-80	0-50
Dry Detention with Filtration	0-30	0-40	60-90	0-50
Alum Treatment	30-70	> 90	> 95	60-75

Varies according to project characteristics and location
Based on 14-day wet season residence time

Alum treatment provides removal efficiencies similar to dry retention

Lake Dot – Pre-treatment Water Quality 5 ac. Lake Receiving Runoff from 305 ac. Urban Basin

108 inch Stormsewer Entering Lake Dot

Lake Dot – Post Treatment

Trends in Alum Treatment

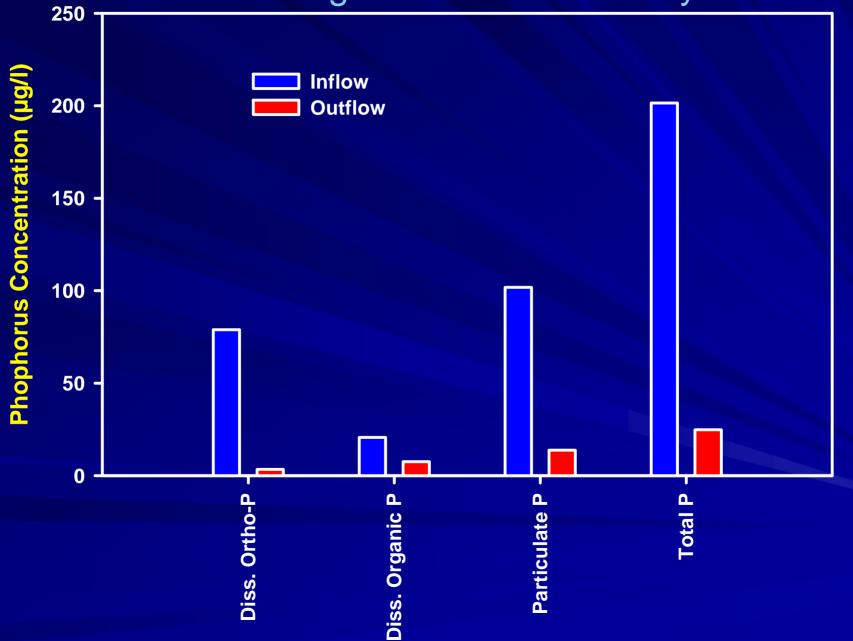
- Recent alum treatment systems are typically used to retrofit large watershed areas (>100 acres) where large pollutant mass removal is required within a small footprint
- Stormwater treatment systems in Florida have been permitted by a variety of agencies:
 - FDEP
 - FDEP (for NWFWMD)
 - SJRWMD
 - SWFWMD
 - SFWMD
- FDEP has indicated that floc collection is required for discharges to State waters by:
 - Federal Clean Water Act
 - Chapter 403, F.A.C. (prohibits treatment of stormwater in "Waters of the State")

Much of current and recent efforts has revolved around issues of floc collection and disposal

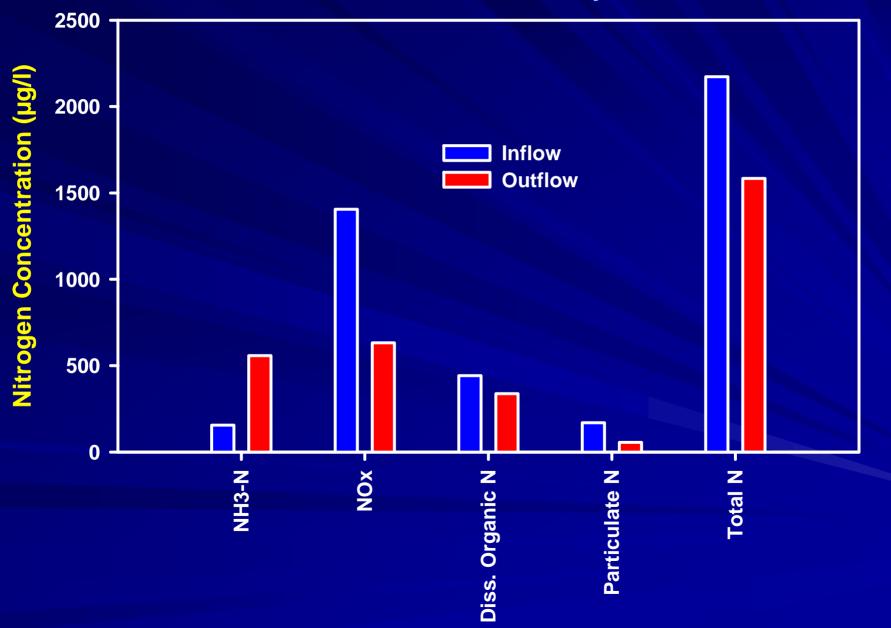
Largo Regional Alum Treatment System Treated Watershed Area = 1500 acres

Drivable Drainage Diversion Weir

> Alum Injection Building


nto Box Culver

Flow


Largo Regional Alum Treatment System Components

Fate of Phosphorus Species in the Largo Stormwater Facility

Fate of Nitrogen Species in the Largo Stormwater Facility

Comparison of Life Cycle Cost Per Mass Pollutant Removed for Typical Stormwater Retrofit Projects*

Project	20–Year Life Cycle Cost	Cost per Mass Pollutant Removed (\$/kg)		
	(\$)	TP	TN	TSS
Alum Treatment				
Largo Regional STF	2,044,780	253	65	4
Lake Maggiore STF	4,086,060	200	71	2
Gore Street Outfall STF	1,825,280	87	12	1
East Lake Outfall TF	1,223,600	135	17	1
LCWA NuRF Facility	34,254,861	198	30	2
Wet Detention				
Melburne Blvd. STF	1,069,000	371	125	2
Clear Lake Ponds STF	1,091,600	658	237	2

* Does not consider cost of land purchase

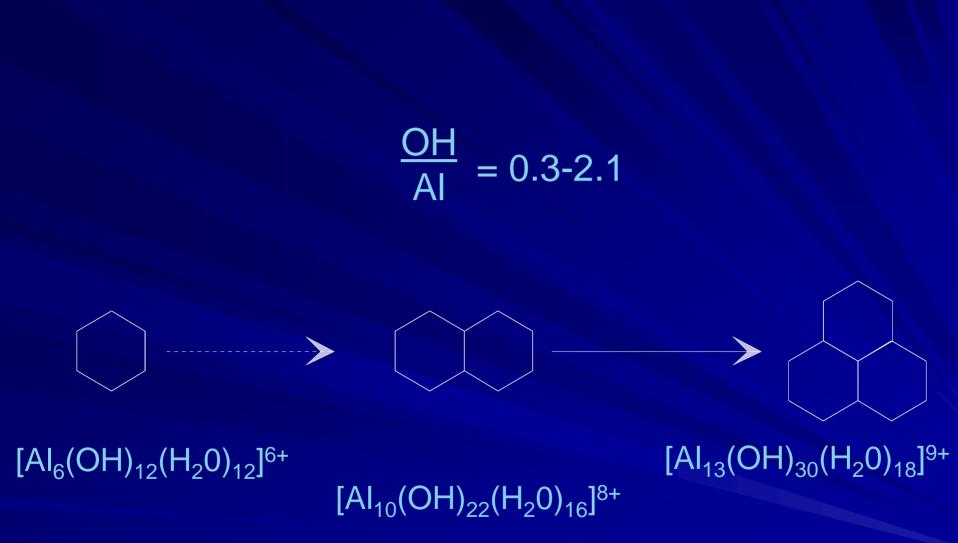
Alum Floc

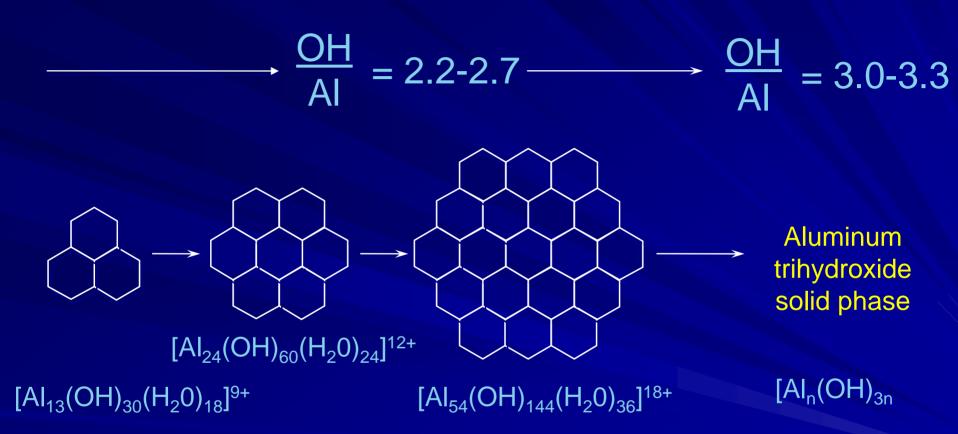
---- Pond Sediments

Anticipated Production of Alum Sludge from Alum Treatment of Urban Stormwater at Various Doses

Alum Dose	Sludge Production ¹		
(mg/l as Al)	As Percent of Treated Flow	Per ac-ft of Runoff Treated	
5	0.16	70 ft ³	
7.5	0.20	87 ft ³	
10	0.28	122 ft ³	

1. Based on a minimum settling time of 30 days


Freshly Collected Alum Floc



Alum Floc Drying Process

Conclusions: 1. Aged alum floc is exceptionally stable under a wide range of pH and redox conditions

2. Constituents bound into the floc are inert and have virtually no release potential

Lake Howard

Equipment Building

Underground Alum Storage Tank

Alum Injection Equipment

Merritt Ridge

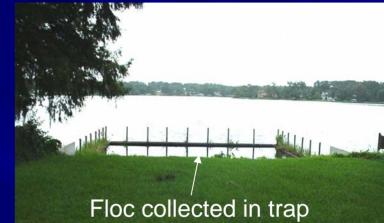
Equipment Building

Alum Injection Equipment

In-line Floc Settling Pond

Regional Flood Control Pond used for Floc Collection

pH Control Equipment



Webster Avenue

Equipment Vault

In-lake Floc Trap

In-lake Floc Trap

Gore Street

Equipment Building

In-line Floc Trap

Floc Disposal System

In-line Floc Trap

Port Orange B-23 Canal Equipment Building

Port Orange B-23 Canal Floc Settling Pond

Port Orange Floc Collection Sump and Valves

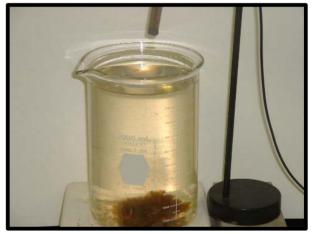
Pump Discharge, To Sanitary Sewer

Pump Inflows from Pond Sump Areas

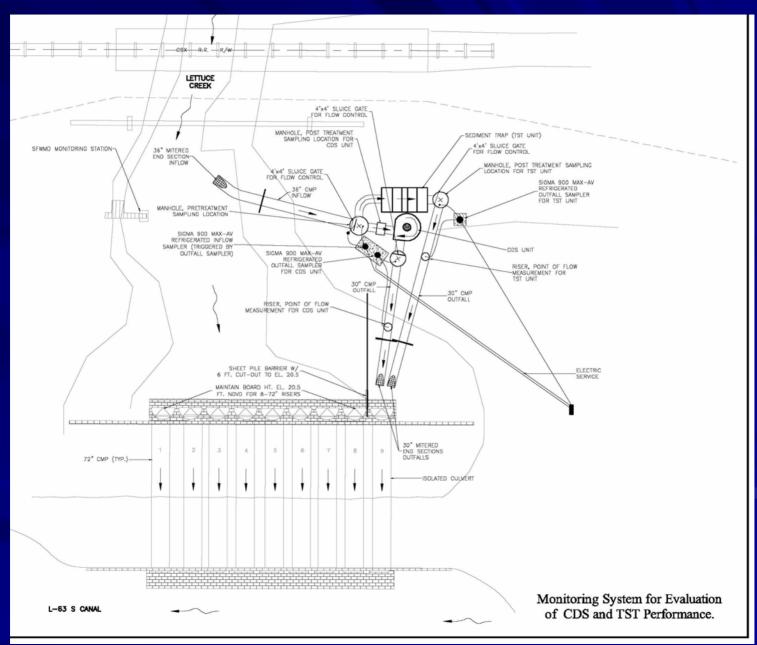

1141

the dense

Floc Pump

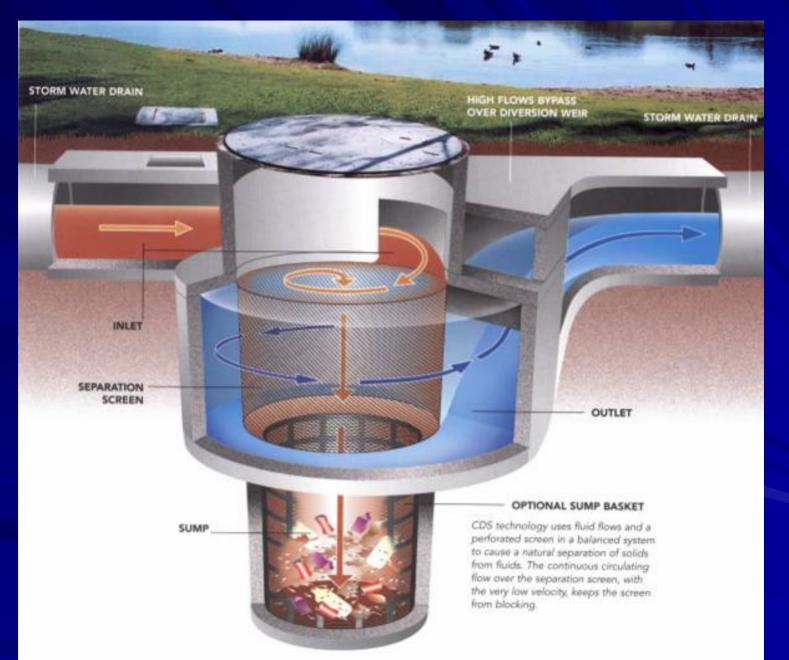

Immediately after alum / polymer addition

60 seconds following alum / polymer addition


30 seconds following alum / polymer addition

3 minutes following alum / polymer addition

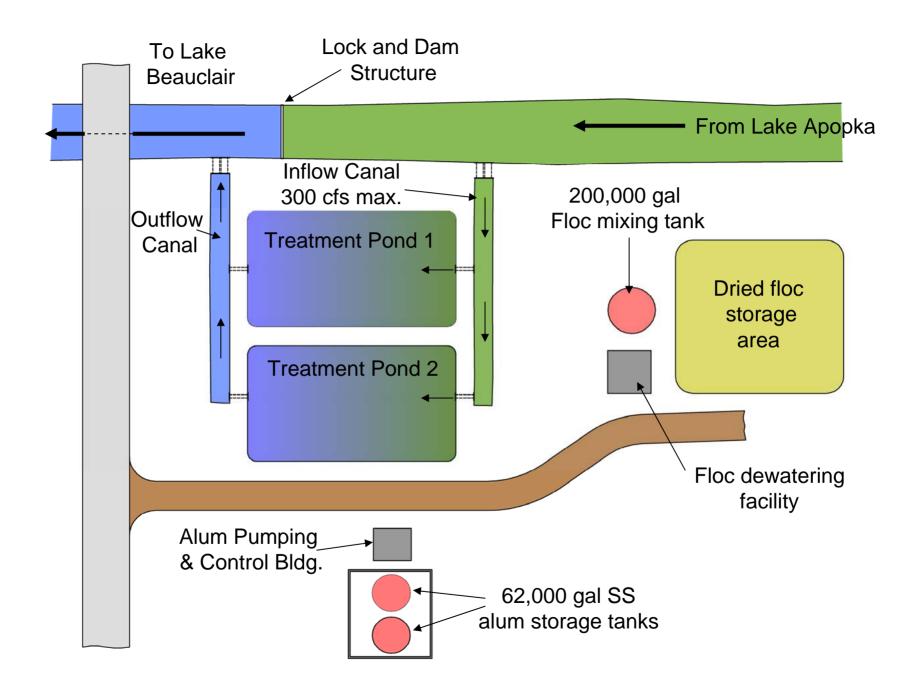
Lettuce Creek Floc Settling at an Alum Dose of 12.5 mg Al/liter and a Polymer Dose of 10 ppm


Schematic of Lettuce Creek Test Site

Lettuce Creek Between the CSX Railroad and the L-63S Canal

CDS Unit

Construction of CDS and Baffle Box Units


Storage Tanks for Alum and Polymer

Conclusions – 1. CDS unit did not provide significant removal of alum floc 2. Turbulent conditions inside unit prevented floc from settling.

LCWA Nutrient Reduction Facility (NuRF)

Characteristics of NuRF Project

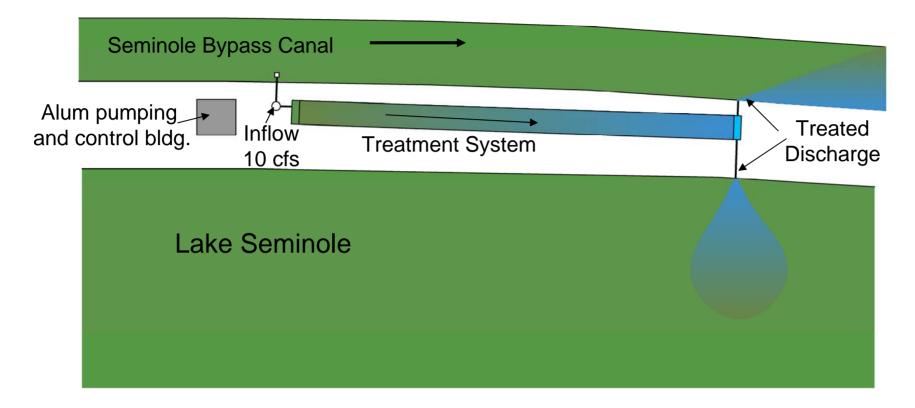
- Designed to reduce TP loadings from Lake Apopka to Harris Chain-of-Lakes
- Capable of treating up to 300 cfs from Apopka-Beauclair canal
- Opinion of construction cost = \$5,000,000
- Floc collected in 2 settling basins
- Floc removal to occur using dedicated dredge system
- Floc generation = 239 ac-ft/yr
- Floc dewatered using centrifuge system
- Floc residual to be used as landfill cover or as soil amendment by SJRWMD

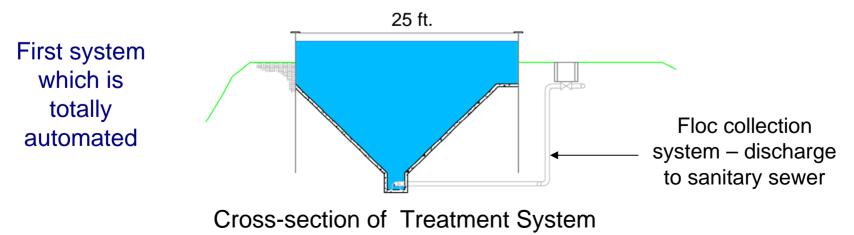
Estimated Annual Discharges Through the Apopka-Beauclair Canal

Condition	Annual Canal Discharge (ac-ft/yr)	Estimated Annual Mass Load (kg/yr)			
		Total N	Total P	TSS	BOD
Existing 1959-2000	54,092	193,972	13,328	2,465,472	339,836
Post Treatment ¹	54,092	137,002 (-29%)	4,669 (-65%)	1,434,165 (-42%)	209,781 (-38%)

1. Assumes that the system will treat 89% of water on an annual basis

Estimated Average Annual Total Phosphorus Loadings to Lake Beauclair from 1991-2000


NUTRIENT SOURCE	MEAN TP LOAD		
	kg/yr	%	
Low-Density Residential	46.5	0.22	
Medium-Density Residential	42.2	0.20	
High-Density Residential	0.0	0.00	
Low-Density Commercial	4.9	0.02	
High-Density Commercial	15.2	0.07	
Industrial	10.0	0.05	
Mining	0.0	0.00	
Open Land / Recreational	1.1	0.01	
Hurley Muck Farm	771.8	3.64	
Pasture	59.6	0.28	
Cropland	49.9	0.24	
Tree Crops	38.5	0.18	
Feeding Operations	0.0	0.00	
Other Agriculture	20.8	0.10	
Forest / Rangeland	29.7	0.14	
Water	25.1	0.12	
Wetlands	97.4	0.46	
Septic Tanks	87.5	0.41	
Precipitation	58.9	0.28	
Dry Deposition	82.2	0.39	
Apopka-Beauclair Canal Discharge	19,744.1	93.17	
Lake Dora Discharge	6.8	0.03	
TOTAL:	21,192.3	100.00	


Chemical Characteristics of Dried Alum Residual from the NuRF Pilot Studies¹

Parameter	Units	Value	Clean Soil Criteria ² (Chap. 62-777 FAC)
Aluminum	μg/g	51,096	72,000
Antimony	μ g/g	< 6.3	26
Barium	μg/g	< 21	110
Beryllium	μg/g	< 0.53	120
Cadmium	μg/g	0.5	75
Calcium	μg/g	1,564	None
Chromium	μg/g	65.0	210
Copper	μg/g	31.6	110
Iron	μg/g	764	23,000
Lead	μ g/g	0.7	400
Magnesium	μg/g	96.8	None
Manganese	μg/g	12.3	1,600
Mercury	μg/g	< 0.091	3.4
Nickel	μg/g	2.3	110
Zinc	μg/g	50.6	23,000
NO _x	μ g /g	0.773	120,000
Total N	μ g /g	2,054	None
SRP	μ g /g	< 1	None
Total P	μg/g	166	None
pН	S.U.	6.17	None

1. Residual sample air-dried and screened using an 0.855 mm sieve 2. Based on residential direct exposure criteria.

Lake Seminole Bypass Canal Treatment System

Issues and Concerns

System reliability

- Early systems had reliability problems with flow monitoring equipment
- Flow monitoring equipment has improved over the years and current systems are designed with redundant equipment

Floc collection

- Early floc collection systems have been inefficient in collecting floc
- Recent modifications have improved the reliability

Operation and maintenance

- Many of the early systems were not properly maintained
- Maintenance personnel typically had primary assignments other than the alum systems
- A commitment to maintenance is necessary

Conclusions