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ABSTRACT: The dynamic response of embedded circular shallow foundations subjected to time-harmonic
vertical excitations is studied in this paper. A dynamic poroelastic boundary element method (BEM) is used for
the analysis of such foundations. An axisymmetric BEM formulation is developed which offers reduction in the
dimensionality of the problem. The paper aims to extend the previous work by the authors on the dynamic
response of circular footings on the surface of poroelastic soil media to account for foundation embedment. The
effect of different embedment ratios and permeability values of the soil is investigated.

1 INTRODUCTION

The dynamic behavior of poroelastic media, such as
soils and rocks, is often determined on the basis of a
single-phase linear elastic model in the study of soil-
structure interaction. The boundary element method
(BEM) has been applied with much success to the
solution of elastodynamic soil-structure interaction,

The present paper aims at modeling the soil in a
more realistic manner by accounting for the inertia
effects within the pore water phase and the
interaction of the soil skeleton and the pore water
under dynamic loads. Although the response within
an infinite medium may often be described by a
single phase model with suitable damping, the effect
of layering of the soil adds more complexity and
requires a more detailed study. BEM is ideally
suited for the study of the dynamic behavior of
semi-infinite media. The axisymmetric dynamic
poroelastic BEM developed by the authors in a
previous paper (Dargush and Chopra, 1996) for the
response of surface footings is applied in this work
to account for the effects of foundation embedment.

Dynamic poroelastic analysis has its basis in
the effective stress theory of Terzaghi. Biot (1956)
extended the work of Terzaghi to a general theory
governing the behavior of two-phase fluid-filled
materials such as soils. The correctness of this
theory in the linear range has been confirmed by
other approaches such as a two-scaled analysis of
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Navier-Stokes equations and the theory of mixtures.
The coupled phenomenon, however, precludes the
development of analytical solutions for all but the
simplest of geometry and boundary conditions. The
finite element method has also been used with Biot's
theory for poroelastic applications.

The initial application of BEM to dynamic
poroelastic analysis involved the use of six
unknowns (solid skeleton displacements and the
average relative solid-fluid displacement), Cheng et
al(1991) and Dominguez (1992) then developed
two-dimensional frequency domain BEM solutions
for the dynamic case using only four independent
variables (the solid displacements and pore pressure}
in the governing equations. Subsequently, Chen and
Dargush (1994) presented a complete transient
BEM for both 2-D and 3-D dynamic poroelastic
analysis. Recently, Dargush and Chopra {1996) have
presented a BEM for axisymmetric dynamic
problems and have studied the response of circular
footings on the surface of a poroelastic medium, The
present work applies this formulation to the analysis
of the response of embedded circular foundations
under vertical excitation. The effect of different
embedment ratios and various permeability values
for the soil is investigated. An attempt is made to
study the dynamic behavior of embedded
foundations in a semi-infinite half-space and a layer
of soil overlying a hard stratum.



2 BOUNDARY ELEMENT FORMULATION

The governing equations for dynamic poroelastic
analysis based upon Biot's theory may be expressed
in frequency domain as balances of momentum and
mass of a fluid-filled medium, as follows:

— ~ 2~ ~ =
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(12)
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where #; is the displacement of the solid skeleton,
pdenotes the pore water pressure. The parameters
Aand ¢ are the drained Lame constants, x is the
permeability coefficient of the soil (ie. k= k/77)
where 7 is the fluid viscosity and % the specific

permeability of the soil Other Biot parameters
include:

a =a—iwps s o = p-iops?s @
£=(1/x+iom) |

where @ is the rotational frequency. The effective
permeability becomes a complex valued function of
@ . The quantitieso and gy denote the total and

fluid densities respectively. The parameters a and
(Jare parameters accounting for the material
compressibilities (Dargush and Chopra, 1996) and
w and f; are the volumetric body source rate and
body force respectively. Lastly, m is a parameter
arising from the generalized Darcy's Law and is
related to the inertial effects of the fluid behavior.
The superposed tilde denotes variables transformed
to the frequency domain.

An exact boundary integral equation, in the absence
of body forces and sources, may be expressed as
follows for a poroelastic volume V bounded by a
surface S (Chen and Dargush, 1995) :

C oo (%) Hy (W) = L [G . (x2;w) 1, (xow)
- F_Ba (x’x'-w) a’ﬂ (x;w)] dS(x)

3

where

75 = {0, 52, 5,3 and fig = (i, 2, 75, 7Y
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are the generalized tractions and the generalized
displacements. Gpg is the displacement kernel and

the traction kemel Fpg is derived from the

displacement kernel by using the stress-strain and
the strain-displacement relations. The matrix Cpg

depends upon the local geometry of the boundary.
Detailed expressions for the kernels are provided in
Chen and Dargush (1994) for the 3-D case.

The axisymmetric kernels are presented in
Dargush and Chopra (1996) and are obtained by the
integration of the 3-D kernels in the circumferential
direction from O to 2% and suitably transforming all
variables to a cylindrical coordinate system. These
kernels exhibit singular behavior as discussed in
Chen and Dargush (1994). The remaining portion of
the dynamic poroelastic kemnels are transient and
non-singular. The generalized axisymmetric case
involving axisymmetric peometry under non-
axisymmetric loading and boundary conditions is
handled by decomposing the displacement and
traction fields into symmetric and antisymmetric
components using Fourier Series expansion. This
leads to two decoupled integral equations for each
harmonic mode, as detailed in Dargush and Chopra
(1996).

Although Equation (3) is an exact boundary
integral equation, it is difficult to solve analytically
for anything but very simple problems, Hence, the
next step is to discretize this equation numerically.
Both temporal and spatial discretization is carried
out in the standard manner. The kernels fiunctions
become explicitly defined complex quantities and the
generalized displacements and tractions represent
complex amplitudes. For the time-harmonic
excitation case, the boundary integral equations (3)
are solved in the frequency domain. Spatial
collocation and numerical integration of the non-
singular and singular kernels, leads to the discretized
form of (3). These equations are wrntten for each
boundary node and arranged into a system of
algebraic equations in a standard BEM manner. The
boundary conditions are then applied which leads to
a unsymmetric complex system matrix {4]such that:

[A]RX} = {6} 4)
where {b} is the vector of" known quantities. This
equation may be solved for the unknown variables
{X} on the boundary. Details of the numerical



implementation may be found in previous works on
axisymmetric BEM. It should be noted that no
special treatment is required for the incompressible
response under undrained conditions nor for the
satisfaction of radiation boundary conditions.

3 NUMERICAL APPLICATIONS

Dynamic Response of a Circular
FEmbedded in a Poroelastic Soil Layer

Footing

The BEM formulation is ideally suited for the study
of the dynamic response of foundations. As an
illustration, the method is now applied to investigate
the wvertical compliance of a smooth, rigid,
impermeable circular footing of radius R embedded
within a poroelastic layer of soil overlying a hard
stratum. The layer is modeled as a two-phase
poroelastic medium. The soil properties are selected
from Dargush and Chopra (1996) as: Poisson’s
Ratio v= 1/3; damping coefficient D=0.05; Porosity
n=0.30; the shear wave velocity c¢;=152 m/s; the
pore water wave velocity ¢, =1439 m/s; solid

grain weight density 25.9 kN / m3; pore water unit
weight 9.81 kN / m’ .

Since actual soils have a finite permeability, thus for
a given value of k, a second time scale enters the
picture and the response, in general, depends upon a
characteristic length (e.g., R). Different degrees of
permeability are considered and a dimensionless
parameter y is introduced where ¥ =c¢, /(cgR)
and c, is the coefficient of consolidation from the
quasistatic formulation which- is related to the
permeability as described in Dargush and Chopra
(1996). The thickness of the single homogeneous
elastic layer of soil is expressed as H and HR = 2
for the current study. The role of layer resonance in
the overall footing response is more readily seen in
plots involving the dynamic compliance of the
foundations. The compliance values are normalized
using the real static stiffness for the embedded
foundations under vertical excitation. Four levels of
embedment, corresponding to d/R =0, 0.5, 1.0 and
1.5, are considered where d is the depth of
embedment. In performing the normalization, the
following stiffness values were determined from
fully drained BEM analyses: K, = 10.2 4R for d/R =
0, K, =143 uR for d/R = 0.5; K, =193 uR for
d/R=1.0and K, = 32.8 xR for d/R = 1.5, Figure 1
shows the variation of the normalized compliance
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with the dimensionless frequency a, where

ay =oR/cg. The frequency dependence and the
dynamic amplification of the foundation response is
clearly evident from the figure. With increasing
depths of embedment, the dynamic amplification
begin to shift to the right to higher frequencies. This
phencmenon is associated with the propagation of
generalized Rayleigh waves within the elastic soil
layer.

Figure 1: Effect of Embedment on the Response of a
Circular Feoting Embedded in a Layer ( y = 0.067)

Next, the effect of various permeability values of the
layer are considered. Figure 2 presents the
normalized compliance of the foundation for varying
levels of the non-dimensional parameter yfor a
surface footing (i.e. d/R = ). Large values of g
are associated with very permeable soils or very
small footings resting on thin soil layers. For
example, y= 0.67 corresponds to the soil with a

permeability coefficient of 0.006 m/s for a footing of
1 m radius. For this case, the frequency range
covered in Fig. 2 is from zero to 152 Hz. The
solutions obtained from completely drained and
undrained elastic analyses are also shown in the
figure. The result for y = 0.0067 coincided with
the undrained response and is not shown for clarity.
For a given footing size, the compliance for a higher
permeability value follows the drained response in
the low frequency domain, while impermeable cases
tend toward undrained behavior throughout the
frequency range considered. The dynamic
amplification of the response due to surface wave
propagation near the frequency a, = /2 is once
again evident.
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Figure 2: Effect of Permeability on the Response of a
Circular Footing on the Surface (d/R = 0)

Figure 3 presents the effect of embedment on the
corresponding variation of normalized compliance
at different permeability levels. The intermediate
case of /R = 1.0 is plotted as an illustration. It is
notable that the amplitude of the dynamic
amplification is somewhat reduced due to the
presence of adjoining soil mass for an embedded
footing, In addition, the resonant frequency of the
layer is shifted to a, =~ # for this case. Once again,
at low frequencies, the response for a higher yis
closer to the drained case but tends to shift towards
the undrained case at higher frequencies. The
response for lower x value tends towards the

undrained response at all @, levels.

Dynamic Response of a Circular Footing
Embedded in a Poroelastic Half Space

The vertical response of the same circular footing
embedded in a semi-infinite homogeneous
poroelastic half space is now studied. Figure 4
presents the normalized compliance of the footing
as a function of different embedment ratios.
However, the dynamic behavior for this case is
significantly different from the layered soil. There is
very little effect of embedment on the response
while no evidence of dynamic amplification is
evident. As expected, at higher frequency the
dynamic compliance of the footing embedded in a
half-space tends towards zero in a monotonic
fashion. Comparisons with the elastodynamic case
for the embedded foundations will be presented in a
forthcoming work.
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Figure 3: Effect of Permeability on the Response of an
Embedded Circular Footing (d/R = 1.0}
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Figure 4: Dynamic Response of a Circular Footing
Embedded in a Poroclastic Half-Space ( ¥ = 0.067)
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