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ABSTRACT 

 

A boundary element method for the solution of two- and three-dimensional problems of 

groundwater flow in orthotropic heterogeneous media is developed.  A generalized 

fundamental solution is derived for the governing equation of Darcy flow using a 

singular, non-symmetric generalized forcing function with special sampling properties. 

The fundamental solutions are constructed as locally radially symmetric responses to this 

forcing function.  The forcing function and the fundamental solution are both functions of 

the heterogeneous material property (i.e. hydraulic conductivity) of the media.  A 

boundary integral equation is formulated and implemented in a numerical scheme for the 

solution of well-posed boundary value problems.  Several numerical examples are 

presented with comparisons to analytical results which illustrate the accuracy of the 

method.  Other numerical applications are provided to show the potential for this general 

algorithm in solving problems of  flow in heterogeneous soil media.  
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INTRODUCTION 

 

The boundary element method (BEM) has been applied with a great deal of success to 

problems of groundwater flow in porous media with constant or piecewise continuous 

permeability (Liggett and Liu, 1983). Such problems in generally non-homogeneous 

media have traditionally been solved using other numerical techniques such as the finite 

difference method (FDM) or the finite element method (FEM). The BEM has a striking 

advantage over these methods for many problems of engineering because it is a Green’s 

function-based integral equation formulation for the solution of the governing partial 

differential equation. The resulting boundary integral equation is solved using numerical 

procedures, and only the boundary of the domain needs to be discretized. This is true for 

linear and nonlinear steady state problems of groundwater flow and in problems of linear 

elastostatics.  

 

For flow through non-homogeneous media, a domain integral appears in the formulation 

arising from the spatial variation of the permeability of the medium. In the past, these 

problems have been solved using either by the discretization of the entire domain to 

evaluate the domain integral (Lennon, 1984) or by sectioning the domain into multiple 

zones with constant properties. The multi-zone technique is discussed in the textbook by 

Gipson (1989) on the solution of the Poisson’s equation. In this approach, the boundary 

integral equations are written for each zone and subsequently the system of equations is 

coupled by enforcing the continuity of the piezometric head and the fluid flux at the 

interface between the zones. The resulting block matrix can be solved using an efficient 

solver. 

 

Recent literature on non-homogeneous flow in porous media has focused on several 

approaches such as a functionally specified variable permeability (Cheng 1984, 1987), 

multiple layers with leaky aquifers (Cheng and Morohunfola, 1993) and stochastic flows 

(Cheng and Lafe, 1991; Lafe and Cheng, 1995).  Cheng (1984) has presented an exact 

Green’s function-based method for Darcy’s flow with variable permeability using a 



 3

formulation that requires the determination of Green’s functions for each type of 

permeability variation. 

 

An analogous development of Green’s function for some heat conduction problems in 

heterogeneous media has also been presented by Clements and Larsson (1993). This 

method eliminates the need for domain discretization and is very attractive, however, the 

method is restricted to certain forms for the  spatial variations of the conducitivity.  

Recently, Shaw (1993) and Shaw and Gipson (1996) have published a new free space 

Green’s function for potential problems in two and three dimensional heterogeneous 

media. However, the spatial variation of the properties was linear in one dimension only. 

Another method applied to the solution of such problems is the perturbation method 

(Lafe and Cheng, 1987) which is based upon small differences between the solutions for 

homogeneous and heterogeneous media. This condition may not be satisfied in all cases 

and as such, perturbation methods are not sufficiently robust. 

 

The dual reciprocity BEM (DRBEM) (Partridge et al., 1992) has provided a mechanism 

for solving non-homogeneous problems using BEM without resorting to domain 

discretization. The non-homogeneous part of the governing equation which gives rise to a 

domain integral in the boundary integral equation is interpolated by a set of basis 

functions. For groundwater flow, the first implementation of DRBEM for heterogeneous 

media was done by El Harrouni et al. (1995) using polynomial based global interpolation 

functions developed by Cheng et al (1994). Various other types of basis functions may 

also be used including trigonometric and hyperbolic functions (Cheng et al., 1994) and 

wavelet basis functions (Lafe and Cheng, 1995).  

 

From the above discussion, it is evident that there is no general way to address this very 

important class of problems using BEM. Recently, Kassab and Divo (1996) have 

developed a generalized fundamental solution for the solution of heat conduction 

problems in isotropic, non-homogeneous media using BEM. The aim of the present paper 

is to extend this formulation to problems of groundwater flow in porous media in which 

the hydraulic conductivity variations are orthotropic and heterogeneous. We develop a 
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formulation which uses a singular non-symmetric forcing function D (Kassab and Divo, 

1996) to derive a boundary-only integral equation along with the generalized 

fundamental solution E. The sampling properties of the forcing function D are critical to 

the solution of the integral equation. Both D and E are defined in terms of the hydraulic 

conductivity of the medium. For the limiting case of constant permeability, the familiar 

Green’s free-space solution for the potential flow problems is recovered. Both two- and 

three-dimensional fundamental solutions are formulated. The boundary integral equation 

is discretized using quadratic isoparametric elements, and numerical examples are 

presented to validate the algorithm. Several examples are presented which validate the 

formulation for orthotropic heterogeneous flow in both two and three dimensions.  The 

seepage flow beneath a dam and an actual field problem of a heterogeneous aquifer with 

irregular boundaries are studied.  Results obtained from the newly formulated BEM 

analysis are found to be in excellent agreement with available (analytical or finite 

element) results. 

   

GOVERNING EQUATIONS FOR FLOW IN A CONFINED AQUIFER 

 

The governing equation for steady state groundwater flow in an orthotropic non-

homogeneous confined aquifer is given by Darcy’s equation: 

 

∂
∂

∂
∂x

k x
h

x
x

i
ij

j
[ ( ) ( )] = 0            (1) 

 

where k xij ( ) is the spatially varying orthotropic hydraulic conductivity of the aquifer 

such that k x
k x

k xij
xx

yy
( )

( )
( )=

⎡

⎣
⎢

⎤

⎦
⎥

0
0  and h x( )  is the piezometric head. The spatial 

variable x defines the coordinate system of choice and depends upon the dimension of 

the problem. Thus, x  represents ( )x x1 2,  in two dimensions and ( )x x x1 2 3, ,  in three 

dimensions. The boundary conditions for this equation can be one or more of these types: 

(a)  Dirichlet conditions : h h=       on Γ1 
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(b)  Neumann conditions: ∂
∂
h
n

hn=    on Γ2 

(c)  Robin conditions:  ∂
∂
h
n

ah b= +       on Γ3 

where n  is the unit outward normal to the boundary Γ, h  and hn  are prescribed values 

of the head and its normal gradient on different parts of the surface, and a and b  are 

constants. The above equation is partial differential equation with variable coefficients 

and will be converted to an integral equation in the next section. 

 

BOUNDARY INTEGRAL EQUATION FOR FLOW IN NON-HOMOGENEOUS 

ORTHOTROPIC MEDIA 

 

Using conventional integral equation methodology, the governing equation (1) is 

multiplied by a function G x( , )ξ , where  ξ  is the source point location,  and the product 

is integrated over the domain Ω  of the problem as follows: 

 

{ ( , ) [ ( ) ( ) ]}G x
x

k x h x
x

d
i

ij
j

ξ ∂
∂

∂
∂

Ω
Ω

=∫ 0           (2) 

 

Using Green’s first identity twice, the following integral equation may be derived  

 

  

[ ( , ) ( ) ( ) ( ) ( ) ( , ) ]

[ ( ) { ( ) ( , )}]

G x k x h x
x

n h x k x G
x

x n d

h x
x

k x G
x

x d

ij
j

i ij
j

i

i
ij

j

ξ ∂
∂

∂
∂

ξ

∂
∂

∂
∂

ξ

− +

=

∫
∫

Γ

Ω

Γ

Ω
0

         (3) 

 

The boundary of the domain is denoted by Γ  which has a dimension equal to one less 

than the dimension of the domain Ω .  Next, a solution to the adjoint equation, perturbed 

by a Dirac Delta function, δ , is introduced as follows 
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∂
∂

∂
∂

ξ δ ξ
x

k x G
x

x x
i

ij
j

[ ( ) ( , )] ( )= − −                      (4) 

 

If it possible to obtain an analytical solution to the above equation subject to an 

appropriate set of boundary conditions, then the function G x( , )ξ  is called the Green’s 

function for the problem and the problem is solved exactly. The sampling property of the 

Dirac Delta function is utilized to convert the domain integral in equation (3) to a point 

function. Such an exact solution is not always possible usually due to the geometry of the 

problem. Thus, in conventional BEM, boundary conditions are not imposed and the 

adjoint equation is solved in infinite domain yielding the Green’s free space solution. A 

boundary integral equation is then derived and subsequently discretized to solve for the 

unknown flux or head at the boundary. 

 

In case of problems where the permeability does not vary in space, the Green’s free space 

solution for the Darcy equation can be retreived from the Green’s function of the Laplace 

equation upon a subsequent scaling. However, no such general fundamental solution 

exists for groundwater flow problem in heterogeneous media. This is due to the following 

reasons: in homogeneous media, the Dirac Delta function is symmetric about the source 

point ξ , and the adjoint equation is not a variable coefficient partial differential equation, 

while in the heterogeneous case, the Green’s function and the free-space solution is non-

symmetric and is more difficult, if not impossible, to derive. Kassab and Divo (1996) 

proposed a new approach to solve the problem of arbitrary variations of thermal 

conductivity in heat conduction. The same approach is utilized in this paper to address 

the groundwater flow problem with spatially varying hydraulic conductivity.  

 

A generalized forcing function D x( , )ξ  is introduced (Hoskins, 1979) in place of the 

Dirac Delta function. The operational properties of D  are critical in proceeding with the 

formulation and will be discussed subsequently. The response of the adjoint equation, 

Equation (4), to application of this forcing function is denoted by a new function 
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E x( , )ξ which replaces the free-space Green’s solution G x( , )ξ  in Equations (1-4). In 

particular, the function D x( , )ξ obeys the following conditions: 

(a) ∂
∂

∂
∂

ξ ξ
x

k x E
x

x D x
i

ij
j

[ ( ) ( , )] ( , )= −  

(b)  D x d x
c
( , ) ( )

,
ξ Ω

Ω
=∫ 1            (5) 

(c)  f x D x d x f A( ) ( , ) ( ) ( ) ( )ξ ξ ξΩ
Ω

=∫  

(d) A D x d x( ) ( , ) ( )ξ ξ= ∫ Ω
Ω

 

where Ω,c  is a circular domain centered about the source point ξ  and Ω  is arbitrary in 

shape but encloses the source point ξ . A singular non-symmetric generalized forcing 

function D x( , )ξ is generated by constructing this set of relations. The sampling 

properties of D  are satisfied once the above is solved; in particular, the integral of 

D x( , )ξ over an arbitrary domain enclosing the source pointξ , shifted at the source point, 

and multiplied by any arbitrary function f x( ) , yields back the function f x( ) at the 

source point ξ  multiplied by an amplification factor, A( )ξ . This is the direct 

consequence of the strongly singular and non-symmetric nature of D  which is 

constructed based upon the spatial variation of the hydraulic conductivity. 

 

The amplification factor A( )ξ can be evaluated readily based upon the assumption that 

the function E x( , )ξ is available. Using relation (d) in Equation (5) with the relation (a) 

yields the following equation for A( )ξ  based upon the function E x( , )ξ : 

 

A
x

k x E
x

x d x
i

ij
j

( ) [ ( ) ( , )] ( )ξ ∂
∂

∂
∂

ξ= −∫ Ω
Ω

         (6) 

 

Applying the Gauss-Divergence theorem to the right hand side of the above equation 

provides the amplification factor as the contour integral: 
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A k x E
x

x d xij
j

( ) [ ( ) ( , )] ( )ξ ∂
∂

ξ= −∫ Γ
Γ

         (7) 

 

It is noted that the amplification factor explicitly depends upon the solution of the adjoint 

equation and the variation of the hydraulic conductivity. For the limiting case of a 

constant permeability, E x G x k r x( , ) ( , ) ( / ) ln[ ( , )]ξ ξ π ξ= = − 1 2 , reduces to the 

fundamental solution of the adjoint problem:  k G x x∇ = − −2 ( , ) ( )ξ δ ξ  where δ ξ( )x − is 

the shifted Dirac Delta forcing function. The amplification factor A( )ξ  for this case 

reduces to the traditional result of k ( )ξ  for any point ξ  in the interior of the domain, and 

to ( / ) ( )1 2 k ξ  for any point ξ  on a smooth boundary. The term δ ξ( )x − in the adjoint 

equation (Eq. 4) is now replaced by the generalized forcing function D . As a result, the 

integral equation for piezometric heads (Eq.3) becomes 

 

[ ( , ) ( ) ( ) ( ) ( ) ( , ) ] ( ) [ ( ) ( , )]E x k x h
x

x n h x k x E
x

x n d x h x D x dij
j

i ij
j

iξ ∂
∂

∂
∂

ξ ξ− − =∫ ∫Γ Ω
Γ Ω

0   (8) 

 

Now, if the sampling property of the forcing function D  is invoked, the integral equation 

(8) can be transformed into equation for the piezometric heads as 

 

A h E x k x h
x

x n h x k x E
x

x n d xij
j

i ij
j

i( ) ( ) [ ( , ) ( ) ( ) ( ) ( ) ( , ) ] ( )ξ ξ ξ ∂
∂

∂
∂

ξ= −∫ Γ
Γ

        (9) 

 

where the expression for the amplification factor is derived from Equation 7. It must be 

noted that the amplification factor is to be computed at all points where the head is 

sought, including both the surface Γ  and the interior of the domain Ω . This equation can 

be solved by using standard BEM algorithm upon evaluating the function E x( , )ξ . The 

numerical implementation of this equation is discussed further in this paper. 

GENERALIZED FUNDAMENTAL SOLUTIONS 
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A generalized fundamental solution for the non-homogeneous case is obtained by solving 

the adjoint equation of the problem, i.e. Equation 5(a). The details of the derivation of the 

fundamental solution for the isotropic non-homogeneous case, have been presented in 

Kassab and Divo (1996).  In this section, the fundamental solution for the orthotropic 

case is detailed for a two dimensional problem. The subsequent discussion of the three 

dimensional case only provides the highlights of the derivation since a significant part of 

the development is identical to the two dimensional case. 

 

Two Dimensional Generalized Fundamental Solution for Orthotropic Media 

 

The fundamental solution is derived by transforming the governing equation into a polar 

coordinate system such that the origin of the system is located at the source point ξ  as 

shown in Figure 1. As a result, the adjoint equation, in the local polar coordinate system, 

becomes  

 

1 1 1 1
2r r

rk E
r r r

k E
r

k E
r r

k E D rrr r r
∂
∂

∂
∂

∂
∂

∂
∂θ

∂
∂θ

∂
∂

∂
∂θ

∂
∂θ

θ ξθ θ θθ( ) ( ) ( ) ( ) ( , , )+ + + = −       (10) 

 

where the permeability tensor is dependent upon the spatial location of the source point 

and is anisotropic in nature. Thus, 

 

r
k r x

k k
k k

rr r
r

( , , )θ θ

θ θθ
=
⎡

⎣
⎢

⎤

⎦
⎥           (11) 

 

The generalized singular forcing function D r( , , )θ ξ  is non-symmetric around the source 

point and allows the selection of locally radially symmetric fundamental solution, such 

that E E r= ( , )ξ . With the radial symmetry of E , the adjoint equation above reduces to 

the following 

 

1 1
r r

rk E
r r

k E
r

D rrr r
∂
∂

∂
∂

∂
∂θ

∂
∂

θ ξθ( ) ( ) ( , , )+ = −           (12) 
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The forcing function in this equation must be non-symmetric for arbitrary variations of 

the k -tensor. Since the inner product of the permeability tensor and the fundamental 

solution E  is a function of ( , , )r θ ξ , the right hand side function D  must also be function 

of ( , , )r θ ξ and therefore, non-symmetric in nature. Equation (12) is solved using a two-

step procedure as described below.  By rearranging the adjoint equation, the following 

convenient form may be obtained  

 

∂
∂

∂
∂

∂
∂θ

∂
∂

θ ξθ
r

rk E
r rk

k
rk E

r
rD rrr

rr
r

rr( ) ( )( ) ( , , )+ = −
1       (13) 

 

Integrating Equation (13), using the properties of the forcing function as described by 

Equation (5), results in  

∂
∂

ξ θ ξ
θ ξ

E
r

r f r
rk rrr

( , ) ( , , )
( , , )

= −          (14) 

 

where the general function f is defined as 

 

f r e rD r e dr hrk
k

dr
rk

k
dr

rr

r

rr

r

( , , ) ( , , ) ( )θ ξ θ ξ θ

∂
∂θ

∂
∂θ

θ θ

= +
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∫ ∫∫

1 1

   (15) 

 

Since the left hand side of Equation (14) is only a function of the local radial location, the 

right hand side term must be such that the two functions cancel out the overall θ  

dependence.  Therefore, a new function g r( , , )θ ξ may be defined as 

 

g r f r
k rrr

( , ) ( , , )
( , , )

ξ θ ξ
θ ξ

= −          (16) 

which leads to the following relation 
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∂
∂

ξ ξE
r

r g r
r

( , ) ( , )
= −           (17) 

 

This equation may be integrated again to yield the generalized fundamental solution, 

E r( , )ξ , as follows 

E r g r
r

dr( , ) ( , )ξ ξ
= ∫             (18)  

To determine the value of the function g r( , )ξ , Equation (12) is integrated over a circular 

domain Ωc centered around the source point ξ , as 

 

  1 1
r r

rk E
r r

k E
r

d D x drr r c c
c c

∂
∂

∂
∂

∂
∂θ

∂
∂

ξθ( ) ( ) ( , )+⎛
⎝⎜

⎞
⎠⎟

= −∫ ∫Ω Ω
Ω Ω              (19) 

 

The right hand side integral is unity by the property of the generalized forcing function 

D x( , )ξ . The Gauss divergence theorem is applied to the left hand side of the equation to 

obtain 

k E
r

n k E
r

n drr r r c
c

∂
∂

∂
∂θ θ+⎛

⎝⎜
⎞
⎠⎟

= −∫Γ Γ 1       (20) 

 

where Γc is boundary of the circular domain, Ωc , surrounding the source point ξ  and 

nr and nθ  are the radial and tangential components of the outward unit normal. On the 

circular boundary, Γc rrd n= =θ , 1 and nθ = 0 . Thus, integrating over the circular 

boundary 

rk r E
r

r drr ( , , ) ( , )θ ξ ∂
∂

ξ θ
π ⎡
⎣⎢

⎤
⎦⎥

= −∫0
2

1        (21) 

which may be simplified, using Equation (17), as follows 

 

[ ]g r k r drr( , ) ( , , )ξ θ ξ θ
π

0

2
1∫ = −         (22)  
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Since the function g is not a function of θ , it may be taken out of the integral, yielding 

the expression 

g r

k r drr

( , )

( , , )

ξ

θ ξ θ
π=

−

∫
1

0

2          (23) 

 

The generalized fundamental solution can now be expressed as follows 

 

E r dr

r k r drr

( , )
( , , )

ξ
θ ξ θπ

= −

∫
∫

0
2

        (24) 

 

This solution is valid for any arbitrary variation of hydraulic conductivity and varies with 

both the spatial location and orientation at any point in the domain. It may noted that for 

the limiting case of constant isotropic permeability k , the above equation reduces to the 

well-known fundamental solution to the Laplace equation in two-dimensions, 

E r k r( ) ( / ) ln( )= 1 2π . 

 

The anisotropic permeability tensor in  the shifted polar coordinate system can be 

transformed back to the corresponding tensor in Cartesian system in 2-D as follows 

 

k k
k k

k
k

rr r

r

xx

yy

θ

θ θθ

θ θ
θ θ

θ θ
θ θ

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥

−⎡

⎣
⎢

⎤

⎦
⎥

cos sin
sin cos

cos sin
sin cos

0
0         (25) 

 

leading to the following relation for krr , 

k k krr xx yy= +cos sin2 2θ θ          (26) 

 

which may then be substituted into Equation (24) to obtain the following expression for 

the generalized fundamental solution 
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E r dr

r k k dxx yy

( , )
(cos sin )

ξ
θ θ θπ

= −
+∫

∫ 2 2

0
2

                 (27) 

 

Thus, the variable coefficients kxx  and k yy  of the permeability tensor must be 

transformed into the shifted polar coordinate system before carrying out the integration. It 

may noted that in addition to retrieving the conventional solution for constant 

permeability, the above generalized fundamental solution also yields the fundamental 

solution for flow in an isotropic heterogeneous porous medium (Kassab and Divo, 1996).  

 

Three Dimensional Generalized Fundamental Solution  

 

The three dimensional fundamental solution is obtained in a manner similar to the 

previous case. A transformation is made to a local spherical coordinate system centered 

around the source point ξ = (x , y ,z )o o o . By perturbing the adjoint equation by a non-

symmetric forcing function D , a generalized fundamental solution E r( , )ξ  may be 

obtained as 

 

1 1
2

2

r r
r k E

r r
k E

r
k E

r
D rrr r r

∂
∂

∂
∂ θ

∂
∂θ

θ ∂
∂

∂
∂φ

∂
∂

θ φ ξθ θ
⎛
⎝⎜

⎞
⎠⎟
+ ⎛

⎝⎜
⎞
⎠⎟
+ ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = −

sin
sin ( , , , )          (28) 

 

Following steps similar to the derivation in two dimensions, the generalized fundamental 

solution in three dimensions becomes 

 

E r dr

r k r d drr

( , )
( , , , ) sin

ξ

θ φ ξ θ θ φππ
= −

∫∫
∫ 2

0
2

0
2

       (29) 

 

The inverse transformation from spherical to Cartesian coordinate system is given as, 

x x r y y ro o= + = +sin cos , sin sin ,θ φ θ φ  and z z ro= + cosθ . Using the orthogonal 
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transformation as before, the expression for the krr  component of the permeability 

tensor under orthotropic conditions, can be written in terms of the Cartesian components 

as, 

 

k r k k krr xx yy zz( , , , ) (sin cos ) (sin sin ) (cos )θ φ ξ θ φ θ φ θ= + +2 2 2 2 2       (30) 

 

Once again, it may noted that this fundamental solution reduces to the well-known three 

dimensional solution for steady-state groundwater flow in a medium with isotropic 

constant permeability, i.e. E r= 1 4/ ( )π .  

 

This section was devoted to the derivation of the generalized fundamental solutions for 

two- and three-dimensional steady state flow in an orthotropic non-homogeneous 

medium. The solutions to the variable coefficient partial differential equation obtained in 

this process are completely general and applicable to a wide range of engineering 

problems governed by such equations.  

 

NUMERICAL IMPLEMENTATION 

 

The numerical implementation of the integral equation (Equation 9), follows standard 

BEM procedures for steady-state problems. The boundary of the domain is discretized 

using N-boundary nodes and isoparametric quadratic boundary elements are used to 

model the piezometric head and the fluid flux at the boundary. The algorithm developed 

by Kassab and Nordlund (1995) is implemented at corners at which the head is 

prescribed. During the collocation process, the source point is taken to each node on the 

boundary and the corresponding surface integrals are evaluated numerically using 

quadratures. The use of double precision Gauss-Kronrod ( G K7 15− ) based adaptive 

quadrature routine DQAGS from the library of the QUADPACK package (Piessens et al. 

1980) is made for accurate integration. The boundary integral equation is written in 

discretized form as 
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A h G k h
x

n H h p Np p p q q
ij

q

j
i

q

N
p q q

q

N

( ) ( ) , , ,...., ,ξ ξ ∂
∂

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ − =

= =
∑ ∑

1 1

1 2       (31) 

 

The amplification factor, A p( )ξ  is evaluated numerically using the same boundary 

discretization as 

A k x
E
x

x n d xp q
ij

j
i

q

N
q

q( ) ( ) ( , ) ( )ξ
∂
∂

ξ= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫∑
=

Γ
Γ

1
       (32) 

where Γq x( )  is the qth boundary element. The application of Equation (31) to all surface 

nodes leads to a matrix set of equations with a standard BEM form, [H]{h}=[G]{q}. This 

set of equations may be solved for the unknown quantities on the boundary by 

introducing the boundary conditions. The integral equation (Equation 9) can also be used 

to solve for interior unknowns by taking the source point ξ  to the interior point. It must 

be noted here that unlike the homogeneous case where the amplification factor for 

interior points A( )ξ = 1, the amplification factor for heterogeneous media must be 

computed for the interior points by using Equation (32).  

 

There are many cases in practice in which the diagonal components of the hydraulic 

conductivity tensor differ substantially from each other. For instance, ratios of ten to one 

are often encountered in highly orthotropic media. These kind of problems pose 

numerical difficulties due to the high conditioning number of the coefficient matrix 

which amplifies errors due to boundary discretization and numerical integration. In order 

to handle such cases, a scaling of the axes is introduced. For a two- dimensional case, the 

governing equation may be written in vector form as: 

 

∂
∂
∂
∂

∂
∂
∂
∂

x

y

k
k

h
x
h
y

xx

yy

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
•

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
=

0
0 0     (33) 
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Scaling of the x - and y -coordinates is introduced as: 

 

x k and y kxx yy= =ξ ηmax max    (34) 

leading to  

 

∂
∂ξ

∂
∂ξ

∂
∂η

∂
∂η

k
k

h k
k

hxx

xx

yy

yymax max

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = 0   (35) 

 

which can finally be written in transformed domain as  

 

∂
∂ξ
∂
∂η

∂
∂ξ
∂
∂η

ξξ

ηη

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
•

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
=

k
k

h

h
0

0 0    (36) 

 

Thus, the problem is solved in the transformed domain with a minimized ratio of the 

orthotropic conductivities. The solution in the ξ η−  domain is subsequently transformed 

back to the original x-y domain. The following section describes a number of numerical 

examples to verify the formulation presented above for the BEM solution of Darcy flow 

problems in orthotropic heterogeneous media. 

 

 

NUMERICAL EXAMPLES 

 

This section presents numerical examples which are used to validate the formulation 

described in this paper and extend the capabilities of BEM in studying more complex 

problems of heterogeneous orthotropic media. Quadratic isoparametric boundary 

elements are used for all studies and both regular and irregular boundaries are 

investigated.  In some cases, particular spatial variations of the hydraulic conductivity are 

assumed to permit the derivation of analytical solutions for comparison.  
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Example 1: One-dimensional non-homogeneous isotropic flow  

 

This example is selected to demonstrate that the above orthotropic formulation retrieves 

the correct isotropic solution. The unit square geometry and imposed boundary conditions 

chosen for this problem are shown in Figure 2 (a). The left and right sides of the square 

region are considered impermeable and thus the flow may be considered one-dimensional 

in nature.  A unit head is specified at the bottom surface while the top surface is 

maintained at zero head.  Figure 2 (b) shows a simple BEM model consisting of 8 

quadratic elements used to solve this problem.  

 

The permeability profile is a function of the depth (y) is taken as follows  

 

[ ]k y e yy( ) . sinh ( . ).= −1 7 2
0 46 17         (37) 

 

However, this function does not lead to a closed form solution for the E function. 

Consequently, the above is approximated by least-squares fitting of the following 

polynomial 

 

k y ay by cy da ( ) = + + +3 2          (38) 

 

for which the fundamental solution can be obtained analytically. In this case,                      

a = -1.42499; b = 0.78762; c = 1.25477; and d = 0.98557 .  The comparison the actual 

and approximated permeability profiles is shown in Figure 3, and the correlation is 

observed to be very good at all depths. The generalized fundamental solution for this 

problem is then derived as  

 

E r x y
ay by cy d

ay b r ay by cy d
ro o

o o o

o o o o( , , )
( )

ln
( ) ( )

=
+ + +

+ + + + +⎡

⎣
⎢

⎤

⎦
⎥

1
4

3 2
3 2

2 3 2

2π
 (39) 
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This illustrates the procedure followed in practice when the hydraulic conductivity 

variation has a form which does not lead to closed-form integration of Eqs. (27) and (29) 

for E.  

 

An exact solution to this problem is found by introducing the hydraulic conductivity in 

the governing equation, Eq. (1), and by subsequently seeking a particular solution to the 

governing PDE. This procedure is followed in all examples below for which analytical 

solutions are derived for comparison with BEM-computed solutions. For the above  case, 

an analytical solution satisfying the governing Darcy equation for the hydraulic 

conductivity in Eq. (38) can be obtained as   

 

h y
y

( )
coth ( . ) .

coth ( . ) .
=
− + −

+ −
17 1 0 46

17 1 0 46
        (40) 

 

The comparison between the exact and BEM solution is provided in Figure 4 where the 

variation of the hydraulic head with depth is plotted.  It is evident from the Figure that, 

even with a relatively coarse 8 quadratic element (15 node) model, the two solution agree 

well at all depths.  This verifies that the above formulation reduces to the correct solution 

in the limit of non-homogeneous isotropic media.  Attention is now given to a series of 

two- and three- dimensional non-homogeneous orthotropic problems. 

Example 2: Two-dimensional homogeneous orthotropic flow beneath a dam  

 

The next example is a two-dimensional application of seepage through a homogenous  

orthotropic soil beneath an impervious dam. This example is selected to demonstrate that 

the above formulation retrieves the correct homogeneous orthotropic solution The 

geometry and prescribed boundary conditions are shown in Figure 5.  The width of the 

bottom of the dam and the thickness of the soil layer are both taken as unity for 

convenience.  The domain on both sides of the dam was truncated at a distance equal to 5 

times the dam width.  The homogeneous orthotropic variation of hydraulic conductivity 

is assumed to be 
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       kij =
⎡

⎣
⎢

⎤

⎦
⎥

10 0
0 1      (41) 

 

An exact solution for the piezometric head anywhere in the domain may be evaluated as 

  

h x y
x y xy x y

( , ) =
− + − + +

+
2 210 6 20 25

10
100    (42) 

 

In this example and all subsequent 2-D seepage examples (3 and 4), forty quadratic 

boundary elements are used. Figures 6(a-b) compare the BEM solution with the 

analytical solution for the distribution piezometric heads within the soil domain. It is 

evident from the contours that the two results are very close.  The relative percent error in 

the heads computed by BEM may be defined as ( | | / xH H Hexact BEM exact− 100 ) and is 

plotted in Figure 6(c).  This plot indicates that the maximum error is around 0.092 %, 

verifying that the correct homogeneous orthotropic solution is obtained. Having 

demonstrated both limiting cases of the above formulation, attention is now given to 

flows in heterogenous media.  

 

 

Example 3: Two-dimensional orthotropic heterogeneous flow in a square region  

 

Building upon the previous groundwater flow beneath an impervious dam, the following  

heterogeneous variation of the hydraulic conductivity is considered in this example, 

 

k x y
x y

x yij ( , ) =
+ +

+ +
⎡

⎣
⎢

⎤

⎦
⎥

8 25 270 0
0 2 30

                             (43) 

 

For this case, the exact solution for piezometric heads at any point in the body can be 

evaluated as  

h x y
y x xy y

( , ) =
− + + +

+
4 24 4 24

30
100

2
           (44) 
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The geometry and boundary condition descriptions are the same as shown in Figure 7 and 

once again, forty quadratic elements are used for the solution.   

 

Figures 8(a-b) display the comparison of the results obtained by BEM analysis and the 

analytical solution derived in Equation (44).  The correlation  between the two sets of 

results is excellent with the maximum relative error of the order of 0.213 % as shown in 

Figure 8[c].  This problem validates the generalized BEM formulation for an orthotropic 

heterogeneous soil medium.   

 

Example 4: Orthotropic heterogeneous flow beneath a dam with prescribed heads 

 

Having established the accuracy of the BEM formulation for heterogeneous flow, we 

now consider the seepage below the dam with specified upstream and downstream 

conditions. The problem description and boundary conditions are shown in Figure 9.  

Three cases of permeability variations in the soil are considered, namely, 

 

(i)  Homogeneous orthotropic 

 kconst =
⎡

⎣
⎢

⎤

⎦
⎥

10 0
0 1

     (45) 

  

(ii)  Heterogeneous orthotropic with a linear variation  

  

 k
x y

x ylinear =
+ +

+ +
⎡

⎣
⎢

⎤

⎦
⎥

10 12 40 0
0 12 40

( )
  (46) 

  

(iii) Heterogeneous orthotropic with a quadratic variation 

 

k x xy y x y
x xy y x yquad =

+ + + + +

+ + + + +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

10 10 45 5 40 300 0
0 10 45 5 40 300

2 2

2 2
( )

( )
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(47) 

Note that in all cases the ratio of hydraulic conductivity in the x-direction to the               

y-direction is ten to one. The BEM solutions for the head in the soil domain for all three 

cases are shown in Figures 10 (a-c).  The contours of piezometric heads represent 

equipotential lines. This demonstrates a practical application of our formulation to a 

problem in which heads are prescribed upstream and downstream of a dam. However, no 

analytical solutions are available for comparison. In the next example, our BEM 

predicted solution is compared to results of previous studies obtained by a dual 

reciprocity BEM and by FEM. 

Example 5: Yun-Lin Aquifer Problem (Lafe and Cheng, 1987)  

 

In this example, we consider the Yun-Lin aquifer on the island of Taiwan studied by Lafe 

and Cheng (1987). The simulated aquifer geometry and values of the transmissivity at 

selected interior locations is shown in Figure 11. The aquifer transmissivity plays the 

same role as the hydraulic conductivity, and the governing equation for the groundwater 

flow remains Equation (1). Based upon the discrete values provided in Lafe and Cheng 

(1987), the conductivity may be approximated by least-squares fit of the following 

polynomial: 

k x y C C xy C y C x C y C( , ) = + + + + +1 2 3
2

4 5 6   (48a) 

for which the following constants are obtained: 

 

C C C C C
C

1 2 3 4 5

6

0 54828 010968 0 33679 18 65872 2134066
48 77641

= = = = − = −
= −

. ; . ; . ; . ; . ;
.

     (48b) 

 

Figure 12 shows a contour plot of the approximated conductivity variation within the 

aquifer domain. The aquifer is bounded on two sides by impermeable formations and 

consists of a single layer.  The aquifer is modeled using 44 equally-spaced quadratic 

boundary elements, and it may noted that in contrast to previous FEM and BEM studies, 

no interior elements are required.  The generalized fundamental solution for this case is 

found to be 
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[ ]
E r x y

K C C r r
Ko o( , , )

ln ( ( ) ln( )
/

=
+ + −2

2
1 1 3

2 1 2

1π
   (49a) 

where 

K C C x y C y C x C y Co o o o o1 1 2 3
2

4 5 6= + + + + +    (49b) 

 

The distribution of the head around the boundary of the aquifer starting at x = 4, y = 0 

and going counterclockwise, is shown in Figure 13.  The next figure (Figure 14) shows 

the contours of piezometric heads within the domain of the aquifer.  Based upon this 

figure, Table 1 presents the comparison of the heads obtained from the present BEM 

formulation with the results of Lafe and Cheng (1987) and the FEM results presented in                  

Lafe et al. (1981) at selected interior points.  In general, good agreement is observed 

throughout most of the domain.  However, the present BEM solution approximates the 

transmissivity distribution in a general manner and does not restrict the principal axes of 

the transmissivity tensor to be parallel to the global axes directions as is done in the 

previous works.  This may explain the differences in the solution, particularly in the 

zones where there are significant changes in the transmissivity values over short distances 

(i.e. the left side of the aquifer).  Hence, the present solution may be considered to a more 

accurate representation of the general variation of the piezometric head in the aquifer. 

 

Table 1  Comparison  of the Piezometric Heads at Selected Interior Points  

 

x y Head (m) 
(km) (km) BEM Lafe and Cheng FEM 

8 4 2.621 2.43 3.9 
8 8 3.25 4.72 3.7 
8 16 5.064 9.39 n/a 
12 8 4.968 9.93 9.1 
12 24 11.943 18.68 8.6 
16 12 11.621 21.42 19.8 
20 16 30.852 32.4 33.1 
24 24 43.888 43.07 41.4 
24 32 43.847 45.04 41.6 
32 16 55.072 51.08 54.7 
36 24 56.336 54.61 58.8 
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36 32 54.939 53.46 58.9 
48 28 57.345 57.01 58.3 

 

 

Example 6: Three-dimensional Orthotropic Heterogeneous Field Problem  

 

This example illustrates the application of the proposed BEM formulation to a three-

dimensional problem.  A simulated field problem of seepage beneath a dam that is 

inclined to the direction of flow is presented.  Figure 14 describes the geometry and 

boundary conditions specified for this case.  The orthotropic non-homogeneous variation 

of the hydraulic conductivity is assumed to be  

 

k x y z
x y z

x y z
x y z

( , , )
( )

( )
( )

=
+ + +

+ + +
+ + +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

10 6 45 0 0
0 10 6 45 0
0 0 6 45

2

2

2

 (50) 

The pre-imposed piezometric head on the top surface is given by 

 

h x y z
x y z xy xz yz

x y z
( , , ) =

+ + + + +
+ + +

+
19 14 40 3 25 11

6 45
100   (51) 

 

The BEM solution for the piezometric heads on the outer surface of the soil domain is 

presented in Figure 15(a) while the exact solution is shown in Figure 15(b).  The two 

solutions are observed to be very close and the maximum relative error is found to be 

about 0.4%. The distribution of this error is plotted on the surface in Figure 15(c) and 

verifies the three-dimensional fundamental solution in Eq. (29). 

 

Example 7: Three-dimensional Orthotropic Heterogeneous Field Problem  

 

In the final example, the field problem of seepage beneath a dam inclined to the direction 

of flow is considered again, however the head is prescribed upstream and downstream of 

the dam in analogy to the 2-D example (4).  Figure 16 illustrates the geometry and 
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boundary conditions specified for this case.  The orthotropic non-homogeneous variation 

of the hydraulic conductivity is taken as in Eq. (51). 

The BEM solutions for the piezometric heads on the outer surface of the soil domain is 

presented in Figure 17(a).  The corresponding solutions on the mid-planes and the three 

inside faces of the aquifer are shown in Figures 17(b-c).  This concludes successful  

verification of the proposed generalized BEM formulation for Darcy flow in non-

homogenous orthotropic flows.  

 

CONCLUSIONS 

 

This paper presents a BEM solution for Darcy groundwater flow through orthotropic non-

homogenous media.  A generalized fundamental solution is derived based upon a 

singular, non-symmetric generalized forcing function.  The fundamental solutions 

derived may be represented as the local radially symmetric response to this forcing 

function at the source point which vary within the domain based on the location of the 

source point.  The forcing function and the generalized fundamental solution are both 

functions of the hydraulic conductivity of the medium.  An appropriate boundary integral 

equation is derived from the governing equations and then numerically implemented to 

facilitate the solution of realistic problems. 

 

Several numerical examples considering the limiting cases of homogeneous and non-

homogeneous orthotropy are solved for both two- and three-dimensional problems.  

Excellent correlation is obtained with the current formulation. Problems of regular and 

irregular boundaries are considered and provide confidence in the use of this BEM 

formulation as a powerful numerical tool. 
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Figure 2 (a). Description and boundary conditions for one-dimensional flow problem. 

 

 

 

 

 
 

Figure 2 (b).  BEM model for one-dimensional flow problem. 
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Figure 3.  Comparison of the exact and approximated permeability profiles. 
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Figure 4.  Comparison of the exact and BEM head distribution with depth. 
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Figure 5. Description of the geometry and boundary conditions. 
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Figure 6.  Contours of isoheads (a) exact solution; (b) BEM solution; (c) relative 

percentage error. 
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Figure 7. Description of the geometry and boundary conditions. 

 

 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

108.065107.419106.774106.129105.484104.839104.194103.548102.903102.258101.613100.968

h exact  
(a) 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

108.091107.455106.819106.182105.546104.91104.274103.637103.001102.365101.729101.092

h bem  
(b) 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

0.098 0.082 0.065 0.049 0.033 0.0160.016

%error  
(c) 

 

Figure 8. Contours of isoheads (a) exact solution; (b) BEM solution; (c) relative 

percentage error.  
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Figure 9. Description of the geometry and boundary conditions.  
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Figure 10.  BEM solutions for piezometric heads (a) constant variation; (b) linear 

variation; (c) quadratic variation. 

 



 34

 
Figure 11. Contour plot of the approximate hydraulic conductivity in the geometry of the  

aquifer. 
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Figure 12. Piezometric head distribution around the boundary from node 1 to node 88  

starting at and going counterclockwise.  
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Figure 13. Contour plot of the piezometric head distribution in the aquifer. 
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Figure 14.  Description of the geometry, discretization and boundary condition. 

 

 

 
 

Figure 15(a). BEM solution for the three-dimensional orthotropic heterogeneous problem 

with pre-imposed heads on the top surface. 
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Figure 15(b). Exact solution for the three-dimensional orthotropic heterogeneous problem 

with pre-imposed heads on the top surface. 
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Figure 15(c).  Relative percentage error between the exact solution and the BEM 

solution. 
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Figure 16. Description of the geometry, discretization and boundary condition. 

 

 

 
 

Figure 17(a). BEM solution for piezometric heads on the outside planes. 
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Figure 17(b). BEM solution for piezometric heads on mid-planes. 

 

 
Figure 17(c). BEM solution for piezometric heads on the inside planes. 


