INNOVATIVE TREATMENT AND VOLUME CONTROL

Marty Wanielista
University of Central Florida
Stormwater Management Academy
Orlando, Florida 32816
407.823.4144

wanielis@mail.ucf.edu

www.stormwater.ucf.edu

January 4, 2006

Thanks to Individuals at

- State Departments of Environmental Protection, Community Affairs, and Transportation
- 2. Saint Johns River WMD
- 3. Southwest Florida WMD
- Orange County Florida Stormwater Management Division
- Many Students at UCF, especially Mike Hardin, Ewoud Hulstein, Vince Peluso, and Josh Spence.

OUTLINE

- Slide presentations all on www.stormwater.ucf.edu
- Background and history
- Groundwater
- Volume control and inter-event dry periods
- Pervious concrete
- Irrigation and reuse
- Green Roofs
- Conclusions, discussion, and future considerations

BACKGROUND ON REGULATIONS

FROM: Eric H. Livingston
Bureau of Watershed Management
Florida Dept. of Environmental Protection
Tallahassee, Florida

eric.livingston@dep.state.fl.us http://www.dep.state.fl.us/water/watershed

STATEWIDE STORMWATER TREATMENT PROGRAMS

•	Florida	1979
	Fiorida	1979

- Maryland 1984
- Virginia 1990
- Delaware 1991
- South Carolina 1992
- Massachusetts 1998
- Rhode Island 2002
- Wisconsin 2002
- New Jersey 2003

NPS PROGRAMS FOR NEW SOURCES The "early years"

- 1972 DRI/ACSC laws
 Land Conservation Act (EEL)
- 1975 Local Govt. Comp Planning Act
- 1979 State Stormwater Rule
 - Chapter 17- 4.248, F.A.C.
 - CARL Trust Fund
- 1981 OSDS rule revisions
 Save Our Coasts/Our Rivers
- 1882 Chapter 17.25 The Stormwater Rule
- 1984 Wetlands Protection Act
- 1985 State Comprehensive Plan

LGCP & LDR Act

1989 Preservation 2000

NPS PROGRAMS EXISTING SOURCES

- 1986 Stormwater utility enabling legislation
- 1987 SWIM Act
- 1989 Dairy Rule for Okeechobee, Stormwater law
- 1991 SJRWMD Rule 40C-44 (Ag/Cost Share)
- 1992 SFWMD Rule 40E-63
- 1994 Nitrate Bill/Fee
- 1997 SRF opened to urban and ag stormwater
- 1998 Ag BMP Cost Share (\$200,000), SRBNMWG
- 1999 Forever Florida Act
 Florida Watershed Restoration Act FWRA
- 2000 Lake Okeechobee Protection Program Revised State Revolving Fund legislation
- 2005 FWRA amendments

FLORIDA WATERSHED RESTORATION ACT Section 403.067, F.S.

- Enacted in 1999
- TMDLs are Total Maximum Daily Loads
- BMAPs are Basin Management Action Plans
- Requires "Good Science" DEP to adopt methodology for determining impaired waters = Impaired Waters Rule (62-303)
- Requires "Public Participation"
 - 303(d) lists are adopted by DEP
 - TMDLs, BMAPs are adopted by rule
- Requires equitable allocation of load reductions

403.067(7)(a) Development of BMAPs

- BMPs adopted by DEP or DACS shall serve as initial management strategy for NPS
- May provide credit to dischargers that already have implemented mgmt strategies
- BMAP shall identify how future sources of increased loading will be addressed

403.067(6)(b) TMDL Allocations

- Clarifies TMDLs are to reduce pollutant loads to achieve WQS, not full restoration
- Initial allocation (PS,NPS) when TMDL adopted
- Detailed allocation to individual PS and NPS categories in BMAP
- Consider allocation factors in both

403.067(6)(c) Adoption of Rules

- TMDLs rules are adopted.
- Phased TMDLs authorized where DEP determines added data collection and analyses are needed (i.e. coliforms).
- DEP must explain "detailed statement of facts and circumstances" why the data are inadequate and justify a phased TMDL.

403.067(7)(b) TMDL Implementation

- For MS4 permittees, TMDL implementation achieved via BMPs
- BMAP implementation schedule may > 5 yrs
- BMAP requirements put into NPDES permits may not be challenged
- NPS dischargers in a BMAP shall implement BMPs or do WQ monitoring
- DEP or WMD may enforce against a NPS discharger in a BMAP, if applicable BMPs not implemented
- "Safe Harbor" can't be required to do more than agreed to do in BMAP

BMAPs and TMDLs

- BMAP & TMDL programs designate Loadings as the control based on WQ.
- Loadings are a product of concentration and volume.
- Thus either reduce concentration or reduce volume or do both.
- This presentation presents methods to reduce volume, but also concentration reductions can occur.

STORMWATER PERFORMANCE STANDARDS

Load (volume) vs. concentration? Annual vs. seasonal vs storm? For what pollutants?

Most common in U.S. programs

- Retain sediment onsite or not violate turbidity standard
- 80% average annual reduction of TSS loadings

SUMMARY OF CALCULATED AREAL POLLUTANT LOADING RATES FOR CENTRAL AND SOUTH FLORIDA
FROM HARVEY HARPER, 1995, "STORMWATER CHEMISTRY AND WATER QUALITY"

-	_ 1		
) /	,,		

LAND USE CATEGORY
Low Density Residential
Single-Family
Multi Family
Low-Intensity Commercial
High Intensity Commercial
Industrial
Highway
Ag – Pasture
Ag - Citrus
Ag - Row Crops
General Ag
Recreational
Open Space
Mining
Wetland
Open Water

TOTAL N	ORTHO-P
2.88	0.169
4.68	0.335
8.51	0.924
5.18	0.157
13.0	1.52
7.30	0.519
6.69	0.361
4.54	0.732
2.91	0.123
2.84	0.421
3.62	0.380
1.07	0.003
2.21	0.131
1.81	0.204
3.23	0.130

AREAL LOADING RATE (kg/ac-yr)

BOD

7.63

14.3

38.4

36.1

79.3

39.5

21.9

7.99

3.60

5.80

0.96

18.0

4.96

4.02

TSS

31.9

56.1

256

343

435

383

182

126

21.9

74.0

7.60

176

11.2

8.05

TOTAL P

0.320

0.594

1.72

0.650

1.96

1.24

1.32

0.876

0.197

0.595

0.551

0.046

0.281

0.222

0.273

TOTAL

Zn

0.06

0.122

0.188

0.511

0.782

0.543

0.508

0.005

0.229

0.009

0.073

TOTAL

Pb

0.052

0.083

0.299

0.635

0.985

0.872

0.727

0.021

0.378

0.039

0.065

IMPACTS OF UNMANAGED STORMWATER

- Changes in watershed hydrology
- Changes in infiltration to ground water
- Changes in stream hydrology
- Changes in stream morphology
- Changes in riparian zone habitat
- Changes in water quality
- Changes in aquatic habitat
- Changes in aquatic ecosystem

Performance Standard for New Stormwater Discharges

Erosion and sediment control

- Retain sediment on-site
- Not violate turbidity standard

Stormwater quantity

- Discharge rate WMD or local standards
- Volume control

Stormwater quality

- 80% average annual load reduction
- 95% average annual load reduction
- Basin specific requirements

RELATIONSHIP OF IMPERVIOUSNESS TO BIOLOGICAL COMMUNITY HEALTH

BMP Design Considerations

Land Use

% imperviousness/DCIA, runoff volume, traffic

Precipitation

Volume, number of storms, interevent dry period

BMP efficiency

 Annual load reduction, on-line vs off-line, reuse, retention vs detention, BMP treatment train

Pollutants

 Annual vs seasonal loads, concentrations, first flush

TMDL FUNDING SB 360 GROWTH MANAGEMENT

201.15, F.S. DISTRIBUTION OF TAXES

- Water Protection & Sustainability Program TF
 - \$100 million annually for 403.890 purposes
 - 60% Alternative water supply
 - 20% TMDL BMP implementation/research
 - 85% to FDEP for non-ag NPS pollution
 - 15% to FDACS for ag NPS pollution
 - 10% SWIM activities
 - 35% SFWMD, 25% SWFWMD, SJRWMD
 - 7.5% SRWMD, NWFWMD
 - 10% Disadvantaged Small grants

TMDL IMPLEMENTATION FUNDING COME AND GET IT!!!!!!! eric

- In the bank:
 - \$9.2 m FY04/05 Florida Forever (2/1/06)
 - \$17.5 m FY05/06 WPSP TF (2/1/07)
 - ~\$8 m FY05/06 Section 319 grants (7/4/05)
- Purposes:
 - Stormwater treatment projects to reduce loads to waters with a TMDL
 - Stormwater BMP research
- How apply:
- http://www.dep.state.fl.us/water/watersheds/forever.htm
- http://www.dep.state.fl.us/water/nonpoint/319h.htm

STORMWATER PROGRAM EVOLUTION

EVOLUTION OF STORMWATER MANAGEMENT

Drainage

IN THE BEGINNING

- Too much water was the common enemy
- Minimal funding except for flood control
- Assimilative Capacity > Pollutant Load
- People cared when they got flooded!

Management Dictum

- Ditch to Daylight
- Drain Wetlands
- Limited Science/Data
- No Environmental Linkage

Stormwater Quantity Evolution

Peak Discharge Rate

- Post-development = Pre-development
 - 10, 25, or 100 year storm
- Multiple storms
 - 2-yr, 24-hour + 10, 25, or 100 year storm
 - Critical Storm

Volume especially for land locked lakes

- Mass Balance
- Simple models
- Continuous simulation

EVOLUTION OF STORMWATER MANAGEMENT

- Drainage
- Stormwater treatment

FLORIDA'S STORMWATER RULES

1979 Chapter 17- 4.248, F.A.C.

1982 Chapter 17- 25, F.A.C.

1994 Chapter 62- 25, F.A.C.

"To prevent pollution of state waters by stormwater discharges"

Water management district MSSW/SW rules Water management district ERP rules

Performance Standard for New Stormwater Discharges

Erosion and sediment control

- Retain sediment on-site
- Not violate turbidity standard

Stormwater quantity

- Discharge rate WMD or local standards
- Volume control

Stormwater quality

- 80% average annual load reduction
- 95% average annual load reduction
- Basin specific requirements

STORMWATER RETROFITTING

Greenwood Reuse

Baffle Boxes

Green Roofs

STORMWATER MANAGEMENT IMPROVES, BUT...

- Flooding continues El Nino rains
- Assimilative Capacity ≤ Pollutant Load
- Channel erosion problems recognized
- Protecting ground water is an issue

Management Dictum

- Monitor/collect data
- Improve H/H modeling
- Better watershed WQ models
- Decrease discharge volumes
- Use regional systems/basin criteria

EVOLUTION OF STORMWATER MANAGEMENT

- Drainage
- Stormwater treatment for new
- Stormwater retrofitting

BUT:

We are still not achieving our goal of protecting or enhancing aquatic ecosystems

Watershed management

SOLVING STORMWATER PROBLEMS

BEST MANAGEMENT PRACTICE

A CONTROL TECHNIQUE USED FOR A
GIVEN SET OF CONDITIONS
TO ACHIEVE
WATER QUALITY AND QUANTITY
ENHANCEMENT
AT A MINIMUM PRICE

BEST MANAGEMENT PRACTICES

Nonstructural = prevention

Structural = mitigation

PREVENTING STORMWATER POLLUTION USING NONSTRUCTURAL BMPs

LAND USE MANAGEMENT - PROMOTE LID

- Protect natural SWM system
- Protect natural areas, wetlands, riparian buffers
- Minimize impervious surfaces, veg clearing

SOURCE CONTROLS

- Street sweeping, litter control
- Natural landscaping (FYN Program)
- Green roofs and roof runoff to rain barrel/landscaping
- Prevent illicit connections & discharges

PUBLIC EDUCATION

- Storm sewer stenciling
- Pet waste collection and disposal

MINIMIZING STORMWATER PROBLEMS

Increase use of source controls

STORMWATER TREATMENT PRACTICES

Structural BMPs.

Swales

- **Retention systems**
 - Infiltration basins
 - Infiltration trenches
 - **Exfiltration trenches**

Pervious pavement

Dry et ntion Filters stems

- Wet detention
- **Wetlands**
- **Green roofs**

BMP TREATMENT TRAIN

Erosion control Source controls Public ed Roof runoff Florida Yards LID

Swales Filter inlets Oil/water separators

Cistern Catch basins Sediment sump **Alum**

Retention **Detention** Wetlands Reuse

INFILTRATION PRACTICES

DESCRIPTION: Family of practices where the stormwater is infiltrated or evaporated rather than discharged.

PURPOSE:

- Reduce total volume
- Reduce pollutants

POLLUTANT REMOVAL:

- Percolation
- Filtering and adsorption

DETENTION PRACTICES

DESCRIPTION: A family of practices which detain runoff and discharge it.

PURPOSE:

- Flood protection
- Water storage
- Pollutant removal

POLLUTANT REMOVAL:

Depends on type of detention BMP

KEY ELEMENTS FOR RESTORING YOUR COMMUNITY'S WATERS

Reducing Impacts from Existing Development

- Increase use of source controls
- Agricultural BMPs
- Better maintain existing stormwater treatment systems
- Upgrade existing stormwater treatment systems
- Convert existing stormwater treatment systems
- Stormwater retrofitting

REDUCING STORMWATER LOADS FROM EXISTING DEVELOPMENT

Better maintain existing stormwater

treatment systems

- More inspections
- Inspector training
- Local OM permits
- Utility fee credits

STORMWATER RETROFITTING REGIONAL SYSTEMS

- Lake Jackson
- Greenwood Wetland
- Clear Lake Packed Bed Filter
- Brevard Chain of Lakes
- 10 Mile Filter Marsh

Lake Greenwood Urban Wetland

Watershed Area: 527 acres

Land Use: 275 acres - Residential

210 acres - Commercial/residential

28 acres - Open space

14 acres - Water

Project Cost: \$581,000 1990 dollars

Stormwater reuse saves the City of Orlando over \$25,000/year 1990 dollars

Bath Club Concourse Stormwater Rehabilitation Using

Watershed Areavious. Cogresete

Land Use: 2.12 acres - Parking/road

Project Cost: Total Project - \$147,015

Town of North Redington Beach

Effectiveness:

Parameter Lead Zinc TSS BOD TP OrthoP TN % Removal 73 72 73 61 49 26 65

Oleander Avenue Exfiltration Trench System

Watershed Area: 49 acres

Land Use: Single family residential/street

23% DCIA

Project Cost: Total Project - \$513,700

DER - State Stormwater Demonstration Grant City of Daytona Beach Stormwater Utility

Effectiveness: The exfiltration trench has not discharged during storms of up to 2". Based on the city's rainfall, the system will retain at least 80% of the annual stormwater volume and pollutant loading.

INNOVATIVE SOLUTIONS

- Disinfection
- Stormwater Reuse
- Green Roofs
- Certified pervious surfaces

ENCINITAS COTTONWOOD CREEK

- Watershed Area: 2000 acres
- Land Use: Highly urbanized
- Project Cost: \$956,000
- Project OM Cost: \$ 5,000/yr
- BMP Treatment Train:

Coarse filters

Multimedia filter tanks

UV purification

Flow rates: Up to 150 gpm

Coarse filters

Multimedia filters

STORMWATER RETROFITTING STORMWATER REUSE SYSTEMS

- SMART Winter Park
- Cocoa Village
- Rainbowls
- South Bay Utilities
- UCF Green Roof

COCOA VILLAGE RETROFITTING

- 12 acre downtown drainage basin
- Discharge to Indian River Lagoon
- Stormwater reuse system
 - Off-line system captures 0.75" runoff
 - Baffle box pretreatment
 - Underground storage pipes
 - Pumped to wastewater plant
 - Mixed with reclaimed water
- Cost: \$328,000 (1999 dollars)
 - City, DEP 319 grant, SJRWMD

South Bay Utilities Inc.

- Upscale residential
- Some Commercial
- No CUP
- No FPSC

- 50¢/1,000 gallons
- Shallow wells
- Customer agreements
 900 homes HOA
- Coastal / fragile resource

UCF Student Union Green Roof

CHAPTER 62-40, FAC
STORMWATER GOAL
FUTURE STORMWATER PERFORMANCE
STANDARD?

POST < PRE

- Peak discharge rate
- Volume
- Recharge
- Pollutant loading (nutrients)*

*In effect in Lake Apopka, Lake Okeechobee, and SW Florida

KEY ELEMENTS FOR RESTORING YOUR COMMUNITY'S WATERS Reducing Impacts from New Development

- Revise Land Development Regs -Promote Low Impact Design
 - Minimize clearing, protect vegetation
 - Promote clustering
 - Reduce imperviousness
 - Save the swales
 - Landscaping
 - Green roofs
- Increased stormwater treatment
 - Reuse stormwater or reduce discharges
 - Better operation and maintenance

WATERSHED TREATMENT TRAIN

Pollution Prevention

- Low impact design
- Public education
- Spill prevention
- Landscape design

Source Controls

- Filter strips, buffers
- Lawn chemical mgmt.
- Pervious pavement
- Green Roofs

Treatment Controls

- Infiltration basins
- Wet detention basins, wetlands
- Alum injection
- In water-body pollutants

Historical Perspective

1870 1920 1990 2020

STORMWATER MANAGEMENT

BE PART OF THE SOLUTION

PUBLIC EDUCATION

- Pointless Personal Pollution
 - -www.tappwater.org
- Children Water Festivals
- Inspector training program
- Operator training program
- BMP designer courses
- Ag BMP workshops (CES, IFAS)
- Florida Yards & Neighborhoods
- Animations www/stormwater.ucf.edu and Stormwater Education Training tool box

QUESTIONS??

