

BMPTRAINS MODEL:

A TRAINING WORKSHOP

BY: MARTY WANIELISTA, HARVEY HARPER, ERIC LIVINGSTON AND MIKE HARDIN.

January 28, 2016

PURPOSE OF TRAINING IS TO:

- Present the theory essential for estimating annual nutrient mass removal.
- Understand the basis of removal for 15 Stormwater Best Management Practices Options within BMPTRAINS.
- Define input data required for the BMPTRAINS program.
- Use BMPTRAINS for the selection of stormwater best management practices.
- Solicit comments for improvements to BMPTRAINS

BMPTRAINS MODEL AND USERS MANUAL

BMPTRAINS: an EXCEL and VB based model for sizing BMPs and estimating annual removal effectiveness.

It's acronym is derived from the analysis of stormwater BMPs in series, but can also evaluate parallel and series treatment.

The model is used to evaluate **B**est **M**anagement **P**ractice **T**reatment options for **R**emoval on an **A**nnual basis by those **I**nterested in **N**utrients in **S**tormwater.

Available from: www.stormwater.ucf.edu

What's New

BMPTRAINS Stormwater Best Management Practices Analysis Model (Version 7.7) Registration, Model, and User's Manual

Credit and thanks for the programming and technical skills of: Dr. Mike Hardin, Dr. Harvey Harper, Dr. Ikiensinma Gogo-Abite, Eric Livingston, and Chris Kuzlo

BMPTRAINS MODEL:

INTRODUCTION TO AND NAVIGATION OF THE MODEL

BY: MARTY WANIELISTA

ENABLE the macros

Stormwater BMP Treatment Trains [BMPTRAINS©]

CLICK HERE TO START

HELP - INTRODUCTION

HELP AND BACKGROUND

This program is compiled from stormwater management publications and deliberations during a two year review of the stormwater rule in the State of Florida.

Input from the members of the Florida Department of Environmental Protection Stormwater Review Technical Advisory Committee and the staff and consultants from the State Water Management Districts is appreciated.

guidance and resources to compile this program. The stormwater Management Academy is responsible for the content of this program.

INTRODUCTION PAGE

Model requires the use of Excel 2007 or newer

- 1) There is a users manual to help navigate this program and it is available at www.stormwater.ucf.edu
- 2) This spreadsheet is best viewed at 1280 BY 1080 PIXELS screen resolution. If the maximum resolution of your computer screen is lowe than 1280 BY 1080 PIXELS you can adjust the view in the Excel VIEW menu by zooming out to value smaller than 100 PERCENT.
- 3) This spreadsheet has incorporated ERROR MESSAGE WINDOWS. Your analysis is not valid unless ALL ERROR MESSAGE WINDOWS are clear.
- 4) PRINTING INSTRUCTIONS: Many options. One is to print the page to MICROSOFT OFFICE DOCUMENT IMAGE WRITER (typically the default) or ADOBE PDF, save the page as an image document, then print the document you saved.
- 5) Click on the button located on the top of this window titled CLICK HERE TO START to begin the analysis.

Disclaimer: These workbooks were created to assist in the analysis of Best Management Practice calculations. All users are responsible for validating the accuracy of the internal calculations. If improvements are noted within this model, please e-mail Marty Wanielista, Ph.D., P.E. at martin.wanielista@ucf.edu with specific information so that revisions can be made.

Stormwater BMP Treatment Trains [BMPTRAINS©]

CLICK HERE TO START

HELP - INTRODUCTION

INTRODUCTION PAGE

HELP AND BACKGROUND

Model requires the use of Excel 2007 or newer

This program is compiled from stormwater management publications and deliberations during a two year review of the stormwater rule in the State of Florida. Input from the members of the Florida Department of

Environmental Protection Stormwater Review Technical Advisory Committee and the staff and consultants from the **State Water Management Districts** is appreciated.

The State Department of Transportation provided guidance and resources to compile this program. The Stormwater Management Academy is responsible for the content of this program.

- 1) There is a users manual to help navigate this program and it is available at www.stormwater.ucf.edu
- 2) This spreadsheet is best viewed at 1280 BY 1080 PIXELS screen resolution. If the maximum resolution of your computer screen is lower than 1280 BY 1080 PIXELS you can adjust the view in the Excel VIEW menu by zooming out to value smaller than 100 PERCENT.
- 3) This spreadsheet has incorporated ERROR MESSAGE WINDOWS. Your analysis is not valid unless ALL ERROR MESSAGE WINDOWS are clear.
- 4) PRINTING INSTRUCTIONS: Many options. One is to print the page to MICROSOFT OFFICE DOCUMENT IMAGE WRITER (typically the default) or ADOBE PDF, save the page as an image document, then print the document you saved.
- 5) Click on the button located on the top of this window titled CLICK **HERE TO START** to begin the analysis.

Disclaimer: These workbooks were created to assist in the analysis of Best Management Practice calculations. All users are responsible for validating the accuracy of the internal calculations. If improvements are noted within this model, please e-mail Marty Wanielista, Ph.D., P.E. at martin.wanielista@ucf.edu with specific information so that revisions can be made.

The authors of this prog e program, updated or This is version

Christopher Kuzlo, M November 18, 2015

hma Gogo-Abite.

HELP - HYDROGRAPH AND LEGACY PROGRAMS

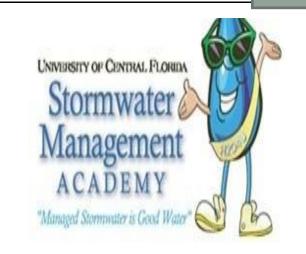
SMADA ONLINE

Stormwater BMP Treatment Trains [BMPTRAINS©]

CLICK HERE TO START

HELP - INTRODUCTION
HELP AND BACKGROUND

INTRODUCTION PAGE


Model requires the use of Excel 2007

There is a users manual to help navigate this program and it is available at www.stormwater.ucf.edu

This program is compiled from stormwater management publications and deliberations during a two year review of the stormwater rule in the State of Florida.

Input from the members of the Florida Department of Environmental Protection Stormwater Review Technical Advisory Committee and the staff and consultants from the State Water Management Districts is appreciated.

The State Department of Transportation provided guidance and resources to compile this program. The Stormwater Management Academy is responsible for the content of this program.

2) This spreadsheet is best viewed at 1280 BY 1080 PIXELS screen resolution. If the maximum resolution of your computer screen is lower than 1280 BY 1080 PIXELS you can adjust the view in the Excel VIEW menu by zooming out to value smaller than 100 PERCENT.

- 3) This spreadsheet has incorporated ERROR MESSAGE WINDOWS. Your analysis is not valid unless ALL ERROR MESSAGE WINDOWS are clear.
- 4) PRINTING INSTRUCTIONS: Many options. One is to print the page to MICROSOFT OFFICE DOCUMENT IMAGE WRITER (typically the default) or ADOBE PDF, save the page as an image document, then print the document you saved.
- 5) Click on the button located on the top of this window titled CLICK HERE TO START to begin the analysis.

Disclaimer: These workbooks were created to assist in the analysis of Best Management Practice calculations. All users are responsible for validating the accuracy of the internal calculations. If improvements are noted within this model, please e-mail Marty Wanielista, Ph.D., P.E. at martin.wanielista@ucf.edu with specific information so that revisions can be made.

Stormwater BMP Treatment Trains [BMP

CLICK HERE TO START

HELP - INTRODUCTION HELP AND BACKGROUND

INTRODUCTION PAGE

1) There is a users manual to help navigate this program and it is

Model requires the use of Excel 2007 or newer

This program is compiled from stormwater management publications and deliberations during a two year review of the stormwater rule in the State of Florida.

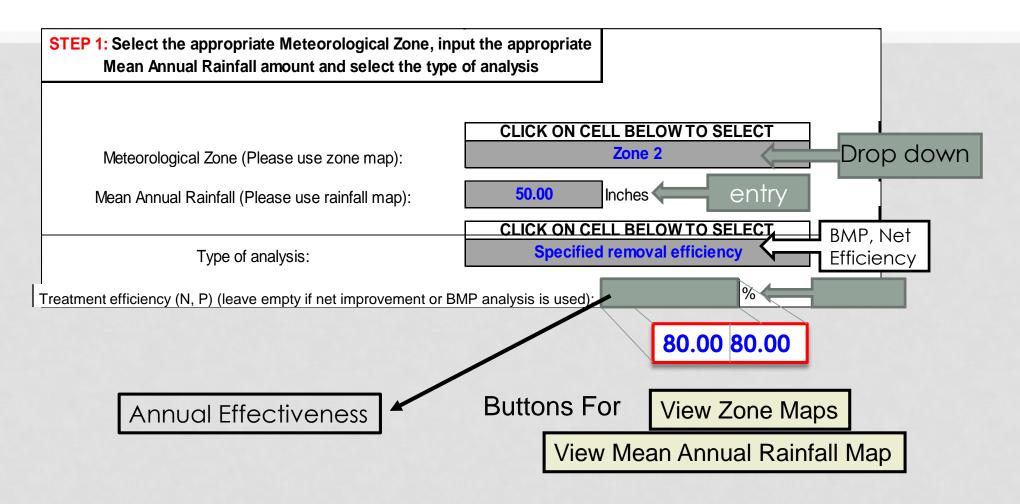
Input from the members of the Florida Department of Environmental Protection Stormwater Review Technical Advisory Committee and the staff and consultants from the State Water Management Districts is appreciated.

The State Department of Transportation provided guidance and resources to compile this program. The Stormwater Management Academy is responsible for the content of this program.

available at www.stormwater.ucf.edu

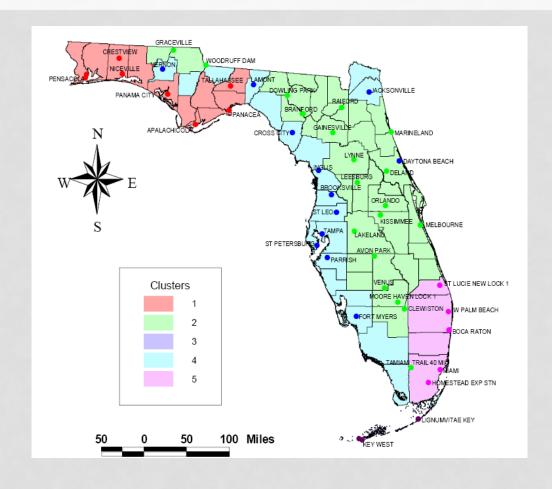
2) This spreadsheet is best viewed at 1280 BY 1080 PIXELS screen

- resolution. If the maximum resolution of your computer screen is lower than 1280 BY 1080 PIXELS you can adjust the view in the Excel VIEW menu by zooming out to value smaller than 100 PERCENT.
- 3) This spreadsheet has incorporated ERROR MESSAGE WINDOWS. Your analysis is not valid unless ALL ERROR MESSAGE WINDOWS are clear.
- 4) PRINTING INSTRUCTIONS: Many options. One is to print the page to MICROSOFT OFFICE DOCUMENT IMAGE WRITER (typically the default) or ADOBE PDF, save the page as an image document, then print the document you saved.
- 5) Click on the button located on the top of this window titled CLICK HERE TO START to begin the analysis.

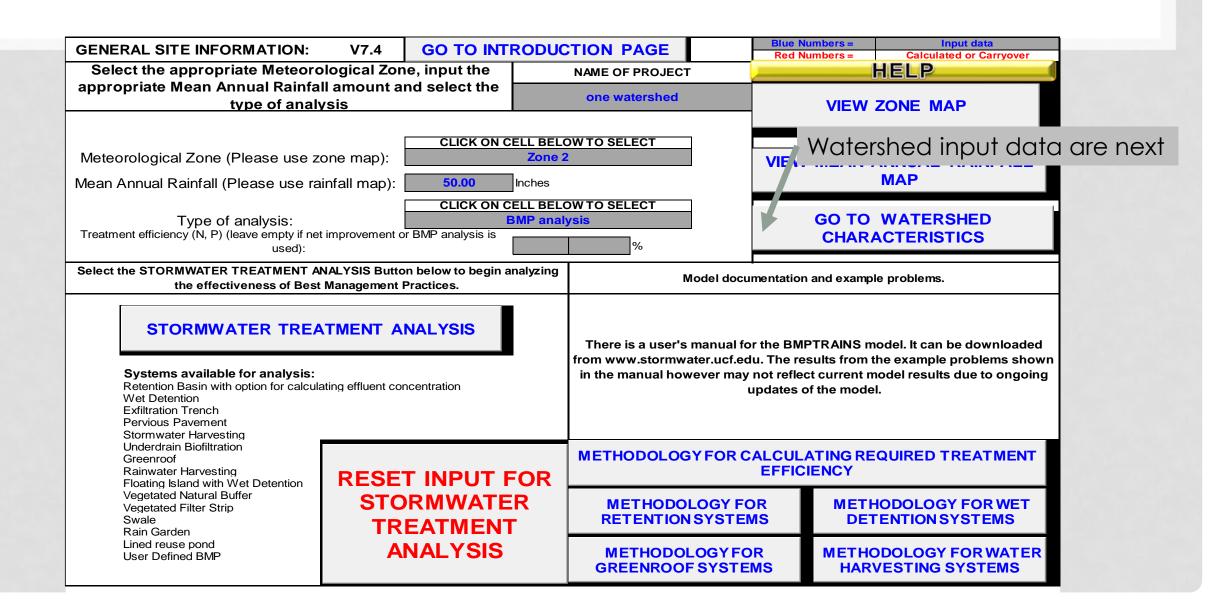

Disclaimer: These workbooks were created to assist in the analysis of Best Management Practice calculations. All users are responsible for validating the accuracy of the internal calculations. If improvements are noted within this model, please e-mail Marty Wanielista, Ph.D., P.E. at martin.wanielista@ucf.edu with specific information so that revisions can be made.

GENERAL SITE INFORMATION

GREY colored cell for input data


GENERAL SITE INFORMATION:	V7.4	GO TO INTE	RODUC	OTION PAGE		lumbers =	Input data Calculated or Carryover	
Select the appropriate Meteoro	_		1	NAME OF PROJECT			HELP	
appropriate Mean Annual Rainfa type of analy		nd select the		one watershed VIEW ZONE MAP				
Meteorological Zone (Please use zone Mean Annual Rainfall (Please use ra		Zone 2 Inches	VIEW MEAN ANNUAL RAIN MAP					
Type of analysis: Treatment efficiency (N, P) (leave empty if net used):	В	MP anal	ysis %			WATERSHED ACTERISTICS		
Select the STORMWATER TREATMENT At the effectiveness of Best		•	nalyzing	Model documentation and example problems.				
STORMWATER TREATMENT ANALYSIS Systems available for analysis: Retention Basin with option for calculating effluent concentration Wet Detention Exfiltration Trench Pervious Pavement Stormwater Harvesting				from www.stormwater.ucf	edu. The re ay not refle	sults from	nodel. It can be downloaded the example problems shown nodel results due to ongoing el.	
Underdrain Biofiltration Greenroof Rainwater Harvesting Floating Island with Wet Detention	RESET	Γ INPUT F	OR	METHODOLOGY FOR CALCULATING REQUIRED TREATMENT EFFICIENCY				
Vegetated Natural Buffer Vegetated Filter Strip Swale Rain Garden	STORMWATER TREATMENT						HODOLOGY FOR WET TENTION SYSTEMS	
Lined reuse pond User Defined BMP	A	NALYSIS		METHODOLOGYI GREENROOF SYST			ODOLOGY FOR WATER VESTING SYSTEMS	

RAINFALL AND TYPE OF EFFECTIVENESS ANALYSIS



RAINFALL ZONE MAP BASED ON WATER QUALITY VOLUMES AND DISTRIBUTIONS

Rainfall
 distributions are
 regionally different.

GENERAL SITE INFORMATION

WATERSHEDS CATCHMENT INPUTS

WATERSHED CHA	WATERSHED CHARACTERISTICS V 7.5			GO TO STORMWATER TREATMENT ANALYSIS			HELP - LAND USES/EM C	
WATERSHED SHA	RACILITIES V1.5				Red Numbers =	Calculated		
SELECT CATCHM	ENT CONFIGURATION	CLICK ON CELL BELOW TO SELECT CONFIGURATION			VIEW CATCHMENT CONFIGURATION			
			A - Single Ca	tchment			3ELEC	
CATCHMENT NO.1 CHARA		VIFW AVE	RAGE ANNUAL	OVERWRITE D	DEFAULT CONCE	ENTRATIONS USING:		
	CLICK ON CELL BELOW TO	SELECT		F "C" Factor	PRE:	_	POST:	
Pre-development land use:	Agricultural - Pasture: TN=3.470	TP=0.616			EMC(N):	mg/L	mg/L	
with default EMCs	with default EMCs CLICK ON CELL BELOW TO SELECT				EMC(P):	mg/L	mg/L	
Post-development land use:	VIEW EMC & FLUCCS			-				
with default EMCs					USE DEFAULT CONCENTRATIONS			
Total pre-development catchr	ment area:	4.00	AC		OOL D	LI AGET GONGE	MIKATIONS	
Total post-development catch	nment or BMP analysis area:	4.00	AC	Average annual pre rui	noff volume:		0.500 ac-ft/year	
Pre-development Non DCIA (60.00		Average annual post ru			6.563 ac-ft/year		
Pre-development DCIA perce	0.00	%	Pre-development Annu	ual Mass Loading - Nitrogen : 2.140 kg/year				
Post-development Non DCIA	60.00 Pre-development Annu		ual Mass Loading - Phosphorus : 0.380 kg/year					
Post-development DCIA perc	50.00 % Post-development Ann			nual Mass Loading - Nitrogen: 13.273 kg/year				
Estimated BMPArea (No load	ling from this area)	0.25	AC	Post-development Ann	nual Mass Loading - Pl	nosphorus:	1.781 kg/year	

WATERSHEDS

CATCHMENT CONFIGURATIONS

WATERSHED CHARACTERISTICS

SELECT CATCHMENT CONFIGURATION

VIEW CATCHMENT CONFIGURATION

Series Up to 3 BMPs in Parallel Each catchment 2 14 configurations 3 4

WATERSHEDS CATCHMENT INPUTS

WATERSHED CHA	RACTERISTICS V 7.5	GO TO STORMWATER TREATMENT ANALYSIS			Blue Numbers = Red Numbers =	Input data Calculated	HELP - LAND USES/EMG	
SELECT CATCHME	ENT CONFIGURATION	CLICK ON CELL BELOW TO SELECT CONFIGURATION A - Single Catchment			VIEW CATCHMENT CONFIGURATION			
CATCHMENT NO.1 CHARA	SELECT		RAGE ANNUAL	OVERWRITE D PRE:	EFAULT CONCE	NTRATIONS USING: POST:		
Pre-development land use: with default EMCs	CLICK ON CELL BELOW TO Agricultural - Pasture: TN=3.470 CLICK ON CELL BELOW TO	TP=0.616 PRE			EMC(N):	mg/L mg/L	mg/L	
Post-development land use: with default EMCs	Highway: TN=1.640 TP=0.2		POST	& FLUCCS	USF D	EFAULT CONCE	NTRATIONS	
Total pre-development catchn		4.00		Average convelors was				
Total post-development catch Pre-development Non DCIA C Pre-development DCIA perce	4.00 60.00 0.00		Average annual pre runoff volume: Average annual post runoff volume (note no BMP area): Pre-development Annual Mass Loading - Nitrogen:			0.500 ac-ft/year 6.563 ac-ft/year 2.140 kg/year		
Post-development DCIA perce	CN:	60.00 Pre-development Annu			ual Mass Loading - Phosphorus: 0.380 kg/yea hual Mass Loading - Nitrogen: 13.273 kg/yea			
Estimated BMPArea (No loadi	ng from this area)	0.25	AC				1.781 kg/year	

EMC DEFAULT VALUES

AVERAGE ANNUAL DATA

LANDLIGE	Event Mean Co	ncentration (mg/l)
LAND USE CATEGORY	TOTAL Nitrogen	TOTAL Phosphorus
Low-Density Residential ¹	1.51	0.178
Single-Family	1.87	0.301
Multi-Family	2.1	0.497
Low-Intensity Commercial	1.07	0.179
High-Intensity Commercial	2.2	0.248
Light Industrial	1.19	0.213
Highway	1.37	0.167
Agricultural - Pasture	3.3	0.621
Agricultural - Citrus	2.07	0.152
Agricultural - Row Crops	2.46	0.489
Agricultural - General Agriculture ²	2.79	0.431
Undeveloped	1.15	0.055
Mining / Extractive	1.18	0.15
erage of single-family and undeveloped loading rates		

WATERSHEDS CATCHMENT INPUTS

WATERSHED CHA	RACTERISTICS V 7.5	GO TO STORMWATER TREATMENT ANALYSIS			Blue Numbers = Red Numbers =	Input data Calculated	HELP - LAND USES/EMG	
SELECT CATCHME	ENT CONFIGURATION	CLICK ON CELL BELOW TO SELECT CONFIGURATION A - Single Catchment			VIEW CATCHMENT CONFIGURATION			
CATCHMENT NO.1 CHARA	CTERISTICS:		VIEW AVE	RAGE ANNUAL	OVERWRITE D	EFAULT CONC	ENTRATIONS USING:	
Pre-development land use:	CLICK ON CELL BELOW TO Agricultural - Pasture: TN=3.470		RUNOFF "C" Factor		PRE: EMC(N):	lma/l	POST:	
with default EMCs	CLICK ON CELL BELOW TO				1	mg/L mg/L	mg/L mg/L	
Post-development land use: with default EMCs	Highway: TN=1.640 TP=0.2	VIEW EMC & FLUCCS						
Total pre-development o	nput Data in	4.00	AC		USE DEFAULT CONCENTRATIONS			
Total post-development	Grey Field rea:	4.00	AC	Average annual pre run			0.500 ac-ft/year	
Pre-development Non D Pre-development DCIA	and For Each	60.00	%	Average annual post ru Pre-development Annu	•	,	6.563 ac-ft/year 2.140 kg/year	
Post-development Non	Worksheet in	60.00		Pre-development Annu	ial Mass Loading - Pho	osphorus:	0.380 kg/year	
IPost-development DCIA	LUE COLOR	50.00 0.25		Post-development Ann Post-development Ann		_	13.273 kg/year 1.781 kg/year	

WATERSHEDS CATCHMENT INPUTS

WATERSHED CHAI	RACTERISTICS V 7.5	GO TO STORMWATER TREATMENT ANALYSIS			Blue Numbers = Red Numbers =	Input data Calculated	HELP - LAND USES/EMG	
SELECT CATCHME	ENT CONFIGURATION	CLICK ON CE	LL BELOW TO SEL A - Single Cat	ECT CONFIGURATION	VIEW CATCHMENT CONFIGURATION			
CATCHMENT NO.1 CHARA	051 507		RAGE ANNUAL		EFAULT CONCE	NTRATIONS USING:		
Pre-development land use: with default EMCs	CLICK ON CELL BELOW TO Agricultural - Pasture: TN=3.470 CLICK ON CELL BELOW TO	TP=0.616 NEW EN				mg/L mg/L	mg/L mg/L	
Post-development land use: with default EMCs Total pre-development catchn	Post-development land use: Highway: TN=1.640 TP=0.2 with default EMCs			MC & FLUCCS NEW		EFAULT CONCE		
Total post-development catch Pre-development Non DCIA C Pre-development DCIA percel Post-development Non DCIA (Post-development DCIA percel Estimated BMPArea (No loadi	4.00 4.00 60.00 0.00 60.00 50.00	AC % %	Average annual post runoff volume (note no BMP area): Pre-development Annual Mass Loading - Nitrogen: Pre-development Annual Mass Loading - Phosphorus: Post-development Annual Mass Loading - Nitrogen:			0.500 ac-ft/year 6.563 ac-ft/year 2.140 kg/year 0.380 kg/year 13.273 kg/year 1.781 kg/year		

STREAM GAGING DATA

- Actual Data from a stream nearby UCF, gage operated by USGS.
- Average Streamflow = 1.926 CFS/SQ MI/yr = 26.19 inches streamflow/yr
 - Conversion factor is 13.6 inches on the watershed = 1 CFS/SQ MI.
- Hydrograph separation is 50% runoff or 13.1 inches runoff per year
- Stream is located in meteorological zone 2 with annual rain of 50 inches
- Annual "C" factor is 13.1/50 = 0.262

	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
										Zon	e 2										
	Mean Annual Runoff Coefficients (C Values) as a Function																				
	of DCIA Percentage and Non-DCIA Curve Number (CN)																				
NDCIA		1				1	1	1			rcent Do			1	-		-		-		
CN	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
30	0.002	0.043	0.083	0.123	0.164	0.204	0.244	0.285	0.325	0.366	0.406	0.446	0.487	0.527	0.567	0.608	0.648	0.688	0.729	0.769	0.809
35	0.004	0.044	0.085	0.125	0.165	0.205	0.246	0.286	0.326	0.366	0.407	0.447	0.487	0.528	0.568	0.608	0.648	0.689	0.729	0.769	0.809
40	0.007	0.047	0.087	0.127	0.167	0.207	0.248	0.288	0.328	0.368	0.408	0.448	0.488	0.528	0.569	0.609	0.649	0.689	0.729	0.769	0.809
45	0.010	0.050	0.090	0.130	0.170	0.210	0.250	0.290	0.330	0.370	0.410	0.450	0.490	0.530	0.570	0.610	0.650	0.690	0.729	0.769	0.809
50	0.015	0.055	0.095	0.134	0.174	0.214	0.254	0.293	0.333	0.373	0.412	0.452	0.492	0.531	0.571	0.611	0.651	0.690	0.730	0.770	0.809
55	0.022	0.061	0.101	0.140	0.179	0.219	0.258	0.298	0.337	0.376	0.416	0.455	0.494	0.534	0.573	0.613	0.652	0.691	0.731	0.770	0.809
60	0.030	0.069	0.108	0.147	0.186	0.225	0.264	0.303	0.342	0.381	0.420	0.459	0.498	0.537	0.576	0.615	0.654	0.693	0.731	0.770	0.809
65	0.042	0.080	0.119	0.157	0.195	0.234	0.272	0.311	0.349	0.387	0.426	0.464	0.502	0.541	0.579	0.618	0.656	0.694	0.733	0.771	0.809
70	0.057	0.095	0.133	0.170	0.208	0.245	0.283	0.321	0.358	0.396	0.433	0.471	0.509	0.546	0.584	0.621	0.659	0.697	0.734	0.772	0.809
75	0.079	0.116	0.152	0.189	0.225	0.262	0 298	0.335	0.371	0.408	0.444	0.481	0.517	0.554	0.590	0.627	0.663	0.700	0.736	0.773	0.809
80	0.111	0.146	0.181	0.216	0.251	0.285	0.320	0.355	0.390	0.425	0.460	0.495	0.530	0.565	0.600	0.635	0.670	0.705	0.740	0.774	0.809
85	0.160	0.192	0.225	0.257	0.290	0.32?	0.355	0.387	0.420	0.452	0.485	0.517	0.550	0.582	0.614	0.647	0.679	0.712	0.744	0.777	0.809
90	0.242	0.270	0.299	0.327	0.355	0.384	0.412	0.410	0.469	0.497	0.526	0.554	0.582	0.611	0.639	0.667	0.696	0.724	0.753	0.781	0.809
95	0.404	0.424	0.444	0.464	0.485	0.505	0.525	0.546	0.566	0.586	0.606	0.627	0.647	0.667	0.688	0.708	0.728	0.749	0.769	0.789	0.809
98	0.595	0.605	0.616	0.627	0.638	0.648	0.059	0.670	0.880	0.691	0.702	0.713	0.723	0.734	0.745	0.756	0.766	0.777	0.788	0.799	0.809

NOTE: Pre-application meeting frequent discussion

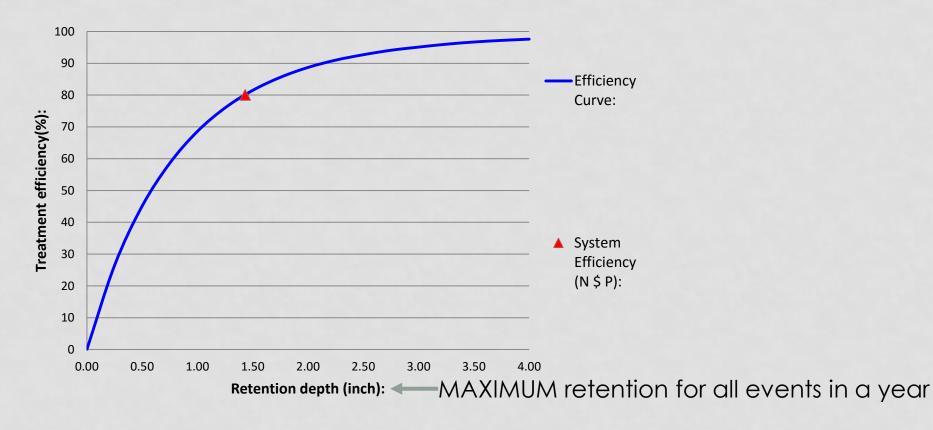
FLUCCS CODES AND MODEL LAND USES

CODE

2210	Citrus groves	Citrus	AG - CITRUS
2220	Fruit Orchards	Citrus	AG - CITRUS
1400	Commercial and Services	Commercial	HIGH INTENSITY COMMERCIAL
1410	Retail Sales and Services Commercia		HIGH INTENSITY COMMERCIAL
3212	Dry Prairie	Dry Prairie	DRY PRAIRIE*
3220	Coastal Strand	Dry Prairie	DRY PRAIRIE*
3300	Mixed Rangeland	Dry Prairie	DRY PRAIRIE*
1300	Residential, High- Density	High- Density Residential	MULTI FAMILY RES
1310	Fixed Single Family Units	Single Family Residential	SINGLE FAMILY RES
1330	Residential, High- Density; Multiple Dwelling Units, Low Rise <t wo<br="">stories or less></t>	High- Density Residential	MULTI FAMILY RES

Reference:

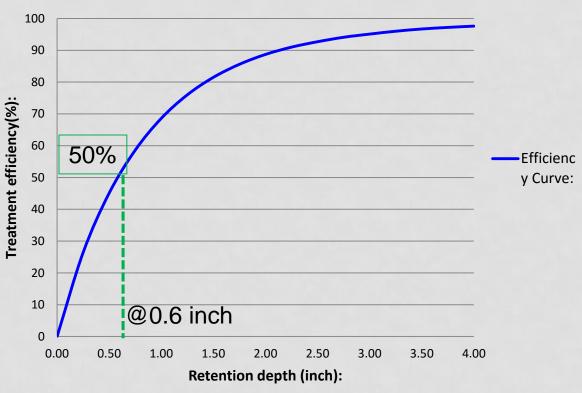
Refining the Indian River Lagoon TMDL- Tech Memo Report Assessment and Evaluation of Model Input Parameters Prepared by ERD, July 2013


* Can also use the general undeveloped rangeland.

NOTE: Pre-application meeting frequent discussion

GENERAL SITE INFORMATION

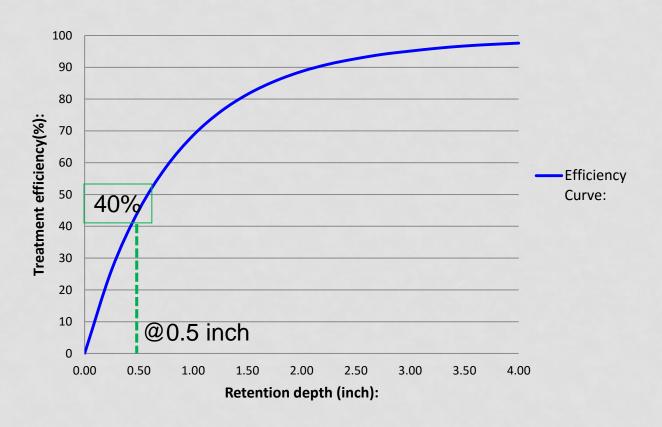
GENERAL SITE INFORMATION: V7.4	GO TO INTRODUCTION PAGE				umbers =	Input data Calculated or Carryover	
Select the appropriate Meteorological Zon			NAME OF PROJECT			HELP	
appropriate Mean Annual Rainfall amount au type of analysis	nd select the		one watershed	watershed VIEW ZONE MAP			
Meteorological Zone (Please use zone map): Mean Annual Rainfall (Please use rainfall map): Type of analysis: Treatment efficiency (N, P) (leave empty if net improvement o used):	Zone 2	OW TO SELECT	VIEW	GO TO	ANNUAL RAINFALL MAP WATERSHED ACTERISTICS		
Select the STORMWATER TREATMENT ANALYSIS Butto the effectiveness of Best Management F	_	nalyzing	Model documentation and example problems.				
STORMWATER TREATMENT A		from www.stormwater.ucf.e in the manual however ma	du. The re y not refle	sults from t			
Source: Evaluation of Curre Design Criteria within the S			Methodologies				
dated June 2007 by Harvey I		METHODOLOGY FOR CALCULATING REQUIRED TREATMENT EFFICIENCY					
PhD., available a http://www.dep.state.fl.us/water		METHODOLOGY F RETENTION SYSTE			IODOLOGY FOR WET ENTION SYSTEMS		
onpoint/SW_TreatmentReport	7 .pat	METHODOLOGY FOR GREENROOF SYSTEM			DOLOGY FOR WATER VESTING SYSTEMS		


Example Demonstration Retention in Series

Retention depth over the watershed area is 1.43 inches for the watershed conditions and rainfall zone.

BUT not sufficient area for one retention basin But may use 3 BMPs for each catchment in Series in one Watershed

1st BMP is pervious pavement @ 0.6 inch treatment

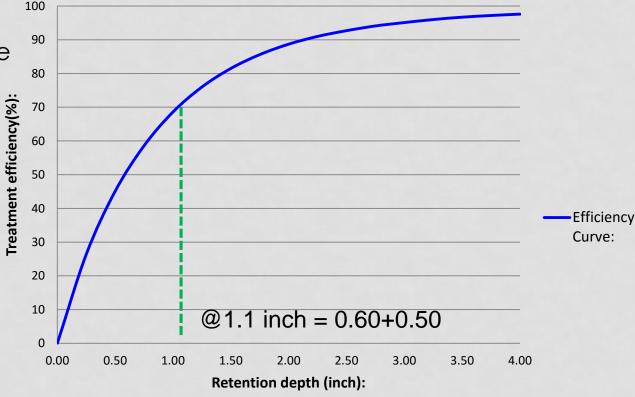

NOTE: This is the effectiveness curve if pervious pave is only used.

Retention depth over the area is 0.60 inches

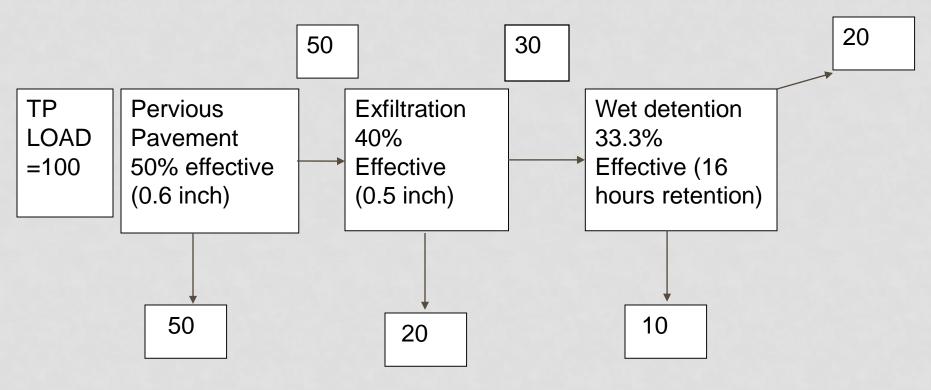
For a pervious pavement with reservoir.

Example 3 BMPs in Series in one Watershed

2nd BMP in series is exfiltration @ 0.5 inch treatment



NOTE: This is the effectiveness curve if exfiltration is only used. Retention depth over the equivalent impervious area is 0.50 inches for an exfiltration system.


FOR RETENTION STAY TRUE TO THE UNDERLYING PRINCIPLES

Annual effectiveness is **not** the sum of the two efficiencies (50+40= 90%) It is however the annual effectiveness at 1.1 inch retention or 70%.

NOTE: order of retention BMPs has no affect on the removal.

BMP TREATMENT TRAIN CREDITS WHEN THREE EFFICIENCIES ARE IN SERIES

$$M = 100 [1 - {(1-0.5)(1-0.4)(1-.33)}] = 100[1-.20] = 80 \% removed$$

- NOTES 1. Example flow diagram for this problem only.
 - 2. There was no input or additional catchment flow between BMPs

15 BMPS AND ONE USER DEFINED

	STEP 2: Select one of the systems below to analyze efficiency.										
RETENTION BASIN	WET DETENTION	EXFILTRATION TRENCH	RAIN (BIO) GARDEN	SWALE	USER DEFINED BMP						
PERVIOUS PAVEMENT	STORMWATER HARVESTING	FILTRATION including BIOFILTRATION	LINED REUSE POND & UNDERDRAIN INPUT								
GREENROOF	RAINWATER HARVESTING	FLOATING ISLANDS WITH WET DETENTION		WATERSHEDS AND TREATMENT SYSTEMS ANALYSIS tab for more information.							
VEGETATED NATURAL BUFFER	VEGETATED FILTER STRIP	VEGETATED AREA Example tree well	CATCHMENT AND TREATMENT SUMMAR RESULTS								

HOW TO USE THE USER DEFINED BMP WORKSHEET?

STARTING WORKSHEET INPUT FXAMPLE Name of BMP 9.500 AC PIPE R Contributing catchment area: Name of BMP % Required treatment efficiency (Nitrogen): TBD Contributing catchment area: 9.500 Required treatment efficiency (**Phosphorus**): **TBD** Required treatment efficiency (Nitrogen): **TBD** Is this a retention or other system*? Required treatment efficiency (Phosphorus): **TBD** If retention, storage depth is: in Is this a retention or other system*? Retention 0.000 AC-Ft The calculated storage volume is: 0.250 If retention, storage depth is: Treatment efficiency (Nitrogen): 0.198 The calculated storage volume is: Treatment efficiency (Phosphorus): Treatment efficiency (Nitrogen): 43.400 Provided treatment efficiency (Nitrogen): Provided treatment efficiency (Phosphorus): 43,400 Treatment efficiency (Phosphorus): Examples of other systems are street sweeping, dry detention, chemical treatment, and pre-treatment devices Enter a short description of BMP below (no more than 200 characters)

Notes: Units defined on full worksheet and Blue font denotes input data for that worksheet

USER DEFINED BMP

STARTING WORKSHEET

Name of BMP	
Contributing catchment area:	9.500
Required treatment efficiency (Nitrogen):	TBD
Required treatment efficiency (Phosphorus):	ТВО
Is this a retention or other system*?	
If retention, storage depth is:	
The calculated storage volume is:	0.000
Treatment efficiency (Nitrogen):	
Treatment efficiency (Phosphorus):	
Provided treatment efficiency (Nitrogen):	
Provided treatment efficiency (Phosphorus):	
* Examples of other systems are street sweeping, dry deten treatment, and pre-treatment devices	tion, chemical
Enter a short description of BMP below (no more than 2	200 characters)

INPUT EXAMPLE

Name of BMP	Up-Flow Filters
Contributing catchment area:	9.500
Required treatment efficiency (Nitrogen):	TBD
Required treatment efficiency (Phosphorus):	TBD
Is this a retention or other system*?	Other
If retention, storage depth is:	
The calculated storage volume is:	
Provided treatment efficiency (Nitrogen):	54.00
Provided treatment efficiency (Phosphorus):	67.00

Learning Summary

- 1. Navigation of the BMPTRAINS model is by buttons. Input data are shown in blue while output data are in red.
- 2. BMPTRAINS model is used to size treatment systems and estimate an average annual nutrient removal effectiveness.
- 3. The average annual effectiveness is site and BMP specific incorporating rainfall conditions, impervious cover, soil conditions, type of land use, and type of BMP.
- 4. BMPs can be analyzed in either series or parallel structure. The estimates stay "true" to the underlying rainfall and catchment conditions.

QUESTIONS, REMARKS AND DISCUSSION

THANK YOU!

