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6 [1] Soil moisture is a critical element in the hydrological cycle especially in a semiarid
7 or arid region. Point measurement to comprehend the soil moisture distribution
8 contiguously in a vast watershed is difficult because the soil moisture patterns might
9 greatly vary temporally and spatially. Space-borne radar imaging satellites have been
10 popular for they may exhibit all-weather observation capability. Yet the estimation
11 methods of soil moisture based on the active or passive satellite imageries remain
12 uncertain. This study aims at presenting a systematic soil moisture estimation method for
13 the Choke Canyon Reservoir Watershed (CCRW), a semiarid watershed with an area of
14 over 14,200 km2 in south Texas. With the aid of five corner reflectors, the RADARSAT-1
15 Synthetic Aperture Radar (SAR) imageries of the study area acquired in April and
16 September 2004 were processed by both radiometric and geometric calibrations at first.
17 New soil moisture estimation models derived by genetic programming (GP) technique
18 were then developed and applied to support the soil moisture distribution analysis. The
19 GP-based nonlinear function derived in the evolutionary process uniquely links a series of
20 crucial topographic and geographic features, including slope, aspect, vegetation cover,
21 and soil permeability, with the well-calibrated SAR data. Research findings indicate
22 that the novel application of GP was proved useful for generating a highly nonlinear
23 structure in regression regime, which exhibits very strong correlations statistically
24 between the model estimates and the ground truth measurements (volumetric water
25 content) on the basis of the unseen data sets. In an effort to produce the soil moisture
26 distributions over seasons, it eventually leads to characterizing local- to regional-scale
27 soil moisture variability and performing the possible estimation of water storages of the
28 terrestrial hydrosphere.

30 Citation: Makkeasorn, A., N.-B. Chang, M. Beaman, C. Wyatt, and C. Slater (2006), Soil moisture estimation in a semiarid

31 watershed using RADARSAT-1 satellite imagery and genetic programming, Water Resour. Res., 42, XXXXXX,

32 doi:10.1029/2005WR004033.

34 1. Introduction

35 [2] Soil moisture is one of the fundamental hydrologic
36 parameters in terrestrial hydrology. The ecosystem in semi-
37 arid or arid areas is normally driven by soil moisture in most
38 cases. It has long been recognized that soil moisture in the
39 root zone regulates atmospheric energy exchange at land
40 surface, which plays a key role in flood and drought
41 genesis. Soil moisture also plays a key role in surface-
42 subsurface water exchanges through infiltration and perco-
43 lation processes. Accurate measurement of soil moisture at
44 the ground level may aid in the estimation of crop yield,
45 plant stress, and watershed runoff. Soil moisture obviously

46varies in space and time. Multitemporal spatially varied soil
47moisture values are normally required as inputs into the
48hydrological, meteorological, and ecological models sup-
49porting the estimation of rainfall-runoff process, the predic-
50tion of meteorological pattern, and the assessment of
51ecosystem [see also Yeh et al., 1998]. The surface soil
52moisture measurement, however, is very difficult to obtain
53over a large area because of a variety of soil permeability
54values and associated soil textures. The point measurements
55can practically be used on a small-scaled area, but it is not
56possible to acquire such information effectively in large-
57scale watersheds. Consistency of measuring in situ soil
58moisture is barely obtainable even on a local scale.
59[3] Satellite derived remotely sensed images may help
60promote realization of the variations in intensity of electro-
61magnetic energy reflected or emitted from the Earth’s
62surface [Lu, 2005]. Space-borne radar imaging satellites
63have become a common means of earth observation in the
64past two decades [Freeman, 1992]. The specific imagery
65produced is determined by the wavelength of the electro-
66magnetic energy that is being sensed, and the physical
67properties of the matter that determine the reflection and
68emission of the energy. Passive and active sensors are the
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69 two major types of radar remote sensors for soil moisture
70 measurement. Yet the estimation methods of soil moisture
71 based on the satellite imageries remain uncertain [Salgado
72 et al., 2001; Glenn and Carr, 2004]. Passive microwave
73 system had explored the capability of measuring soil
74 moisture remotely [Owe et al., 1988; Jackson et al.,
75 1993]. Later on the active microwave systems were devel-
76 oped and used for earth observations. Synthetic Aperture
77 Radar (SAR), one of the active remote sensing schemes, has
78 shown its capability of measuring soil moisture in the work
79 of Ulaby [1974], Olmsted [1993], Dubois et al. [1995],
80 Moran et al. [2000], Njoku et al. [2000], Salgado et al.
81 [2001], Baghdadi et al. [2002], Wilson et al. [2003], and
82 Glenn and Carr [2004]. RADARSAT-1 is a space-borne
83 Synthetic Aperture Radar (SAR) satellite equipped with an
84 active microwave sensor. The active microwave sensor
85 provides all-weather data imaging capabilities for data
86 acquisition because it does not rely on any external micro-
87 wave source [Alaska Satellite Facility (ASF), 1999]. The
88 space-borne SAR can provide the hydrographical features,
89 such as soil moisture, flood zone, and snow cover area [Shi
90 and Dozier, 1995, 1997], on a regional scale because of its
91 large footprint. It is well suited to large-scaled, hydrological
92 applications.
93 [4] Because of the sensitivity of backscattered microwave
94 energy to dielectric constant, the SAR has the potential for
95 measuring water content in the surface soil indirectly
96 [Ulaby, 1974; Dubois et al., 1995]. When using the
97 space-borne SAR to remotely detect water content in
98 the surface soil, the time constraint is almost negligible.
99 The RADARSAT-1 is able to capture surface soil moisture
100 over a large area in a matter of seconds, if the study area is
101 within its swath. However, not only does the dielectric
102 constant affect the SAR, but also many other factors as
103 well. As reported in the work of Dubois et al. [1995],
104 Moran et al. [2000], Salgado et al. [2001], and Baghdadi et
105 al. [2002], the radar backscatter responds to the surface
106 roughness and vegetation cover too. Ulaby [1974] and
107 Olmsted [1993] also mentioned that the radar backscatter
108 responds to surface slope as well. The aspect is the
109 horizontal direction of slope. While the forward and back-
110 ward slopes reflect backscatter toward and away from the
111 incoming direction of the radar signals, the aspect of slope
112 also affects the backscatter likewise. Depending on the
113 direction of the incoming radar signal, the aspect could
114 return the signal back to its incoming direction, or the signal
115 might be reflected away from its source.
116 [5] Estimation of soil moisture based on SAR measure-
117 ment (i.e., ERS or RADARSAT-1) was made possible via
118 developing linear regression models [Freeman, 1992;
119 Dubois et al., 1995; Moran et al., 2000; Moeremans and
120 Dautrebande, 2000; Salgado et al., 2001; Glenn and Carr,
121 2003; Nolan, 2003] and nonlinear regression model [Zribi
122 and Dechambre, 2002] in a single land use/land cover from
123 several hundreds m2 to several km2 on the basis of tradi-
124 tional statistical regression theory. Studies using neural
125 network models and inversion approaches to retrieve soil
126 moisture on the basis of passive microwave remotely sensed
127 data can be found elsewhere [Narayanan and Hirsave,
128 2001; Del Frate et al., 2003; Wigneron et al., 2003]. Up
129 to this point, there is an exceptional difficulty to derive
130 highly complex model in dealing with multiple land use/

149150land cover environment simultaneously within a vast wa-
151tershed while collecting ground data might be extremely
152time consuming and difficult. The further development that
153differentiates this study from the others is to use evolution-
154ary computation approach for fulfilling soil moisture esti-
155mation that uniquely links the SAR imagery with
156topographical and geographical features, such as slope,
157aspect, vegetation cover, and soil permeability without
158touching surface roughness, a parameter that is hard to
159have generic measurement across different land use patterns
160in a vast watershed. Genetic Programming (GP), one of the
161evolutionary computing techniques, is the next best ad-
162vancement to create best selective nonlinear regression
163models in terms of multiple independent variables when
164dealing with multiple land use/land cover situation. The soil
165moisture measurement in the Choke Canyon Reservoir
166Watershed (CCRW), a semiarid watershed in south Texas,
167is of interest in this study since it consists of various types
168of land use patterns, such as row crops, pasture, evergreen
169forest, and range within an area of 14,200 km2. Figure 1 and
170Table 1 jointly present land use/land cover of the CCRW.
171The evolutionary computation using the GP as a means is
172thus proposed in this study to estimate surface soil moisture
173using space-borne SAR along with relevant topographic and
174geographic features. In particular, the aspect in conjunction
175with the RADARSAT-1 SAR data, soil permeability, veg-
176etation cover, and slope itself are incorporated into the set of
177independent variables, and they are collectively used to
178derive a representative soil moisture model in the case
179study. Both root-mean-square error (RMSE) and the square
180of the Pearson product moment correlation coefficient
181(R-square) are used to verify the effectiveness of model
182development.

1832. Study Area

184[6] The Choke Canyon Reservoir Watershed is composed
185of several land use/land cover types. Farming and livestock
186husbandry are major land use patterns in the past few

Figure 1. A description of the land covers in CCRW (see
also Table 1).
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187 decades. The farmland is often graded and plowed, and
188 irrigation may change the soil moisture in some seasons
189 periodically. The livestock in south Texas is naturally fed on
190 grass in open areas and ranches. Mixed land uses in this area
191 introduce complexity of soil moisture distribution. Figure 1
192 is the National Land Cover Data (NLCD) showing the land
193 cover in the watershed (Distributed Active Archive Center,
194 U.S. Geological Survey EROS Data Center, available at
195 http://landcover.usgs.gov). Table 1 complements the de-
196 scription of the NLCD image. It shows the land use patterns
197 in this area mainly include these from evergreen forest in the

198upstream area to cropland and ranges in the middle stream
199areas, and down to shrubland in the lower stream of the
200watershed.
201[7] Landscape in south Texas, however, is intimately tied
202with the geological structure. Figure 2 shows the geographic
203environments and geological features of the CCRW. The
204Choke Canyon Reservoir Watershed (CCRW) encompasses
20514,200 km2 out of the 43,300 km2 Nueces River Basin.
206Elevations in the CCRW range from 42 m above sea level
207near the dam to 740 m at the Edwards Plateau near the
208divide of the watershed upstream. To the north, topography
209strongly influences the hydrology of the watershed. In the
210upper portion of the watershed, the steep slopes and arid
211terrain of the Balcones Escarpment rise into the Edwards
212Plateau. These hills, cliffs, exposed rock, and clay soil,
213while acting as sinks at the beginning of a precipitation,
214cause rapid runoff during large storm events resulting in
215flashflood. As the streams cross the Edwards Aquifer
216Recharge zone, they lose a significant portion of their flow
217through faults and solution cavities (Karst topography).
218Downstream of the Balcones fault zone, the landscape tends
219to flatten as the water flows south and east into the South
220Texas Brush Country where slopes range from 0 to 10%.
221Placement of USGS stream gages above and below the fault
222zone helps to quantify the water losses in the fault zone and
223to provide early warning information of any potential
224flooding in the downstream areas (see Figure 2). Right
225above the Choke Canyon Reservoir there are two USGS
226stream gages measuring the total inflow of the streams that
227flow into the reservoir. According to the historical flow
228measurements recorded in decades, the hydrological pattern
229of this watershed comprises two seasons: wet and dry
230seasons (see Figure 3). The stream data are available at
231http://waterdata.usgs.gov/tx/nwis/rt. The upper portion of
232the CCRW is not included as part of the study area because

t1.1 Table 1. Classification System Used for National Land Cover

Data (NLCD)

Value Classt1.2

11 open watert1.3
12 perennial ice/snowt1.4
21 low intensity residentialt1.5
22 high intensity residentialt1.6
23 commercial/industrial/transportationt1.7
31 bare rock/sand/clayt1.8
32 quarries/strip mines/gravel pitst1.9
33 transitionalt1.10
41 deciduous forestt1.11
42 evergreen forestt1.12
43 mixed forestt1.13
51 shrublandt1.14
61 orchards/vineyards/othert1.15
71 grasslands/herbaceoust1.16
81 pasture/hayt1.17
82 row cropst1.18
83 small grainst1.19
84 fallowt1.20
85 urban/recreational grassest1.21
91 woody wetlandst1.22
92 emergent herbaceous wetlandst1.23

Figure 2. Fault lines, where water recharges to the underground water aquifer, shown in red. The Texas
Hill Country comprises hills and valleys located above the Balcones zone. The differences of slope above
and below the fault zone are obvious. Streams flow southward to the east and are merged together before
flowing into the Choke Canyon Reservoir. The USGS gage stations are located above and below the
recharge zone. One gage is located at the middle of the watershed where all streams are merged. The
other two gage stations are located downstream immediately before the streams flow into the CCRW.
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233 of its unique geological structure of bedrock. There are
234 exposed rocks and gravels in some areas, while the others
235 are covered barely by a very thin layer of soil, if any.
236 Therefore this area is not deemed valuable for soil moisture
237 study.

238 3. Methodology

239 3.1. Field Data Collection

240 [8] Modeling the soil moisture in this study requires
241 emphasizing the efforts of data synthesis of SAR imagery,
242 slope, aspect, soil permeability, and Normalized Difference
243 Vegetation Index (NDVI). Modeling outputs based on
244 genetic programming technique are supposed to compare
245 against intensive ground truth samples in the same region.
246 Yet there was an exceptional difficulty to acquire the ground
247 truth data at the resolution of RADARSAT-1 SAR data in
248 the vast study area. Two sampling campaigns for ground
249 truth measurements were made in April and September
250 2004. They were carried within 24 hours before and after
251 the SAR data acquisition in order to capture the synchro-
252 nous soil moisture patterns. At least four types of land
253 cover, including grassland, shrubland, row crop and decid-
254 uous forest, were included in both April and September
255 campaigns in 2004. Some evergreen forested land upstream
256 was also selected to enhance the credibility of ground
257 truthing (see Table 1 and Figure 1). It looks like there are
258 only 7 fields sampled in the ground truth data acquisitions
259 in Figures 4 and 5. In fact, 434 and 63 surface soil moisture
260 measurement points were collected for building up the
261 ground truth database in April and September 2004, respec-
262 tively. Each measurement point was chosen at least 50 m
263 away from any road or building nearby to increase the data
264 integrity. This could avoid struggling with some misleading
265 results in the end by using strayed backscatter of SAR
266 imagery influenced by the construction work in comparison
267 to the ground truth data points. The distance between any

268two measurement points is at least 13 m apart to ensure that
269there is only one ground truth measurement point that is
270associated with one pixel of SAR imagery. We navigated to
271each measurement point with a handheld Global Positioning
272System (GPS) unit with a capability of reading location of
273submeter accuracy [Trimble Navigation Ltd., 2004]. The
274GPS unit used in this study was a Trimble handheld GPS
275model GEO XT. To reduce the uncertainty, each ground
276truth data would comprise 3 measurements within a vicinity

Figure 3. A log-plot of mean streamflows measured at the USGS stations that are located at Dry Frio
River near Reagan Wells, Hondo Creek at Tarpley, and Sabinal River at Sabinal. The high flow rates
occurred in April 2004 (wet month) throughout the time frame of the SAR data acquisition on 19 April
2004. In September 2004 the flow rates were very low nearly at the base flow, which was considered as a
dry month.

Figure 4. Four hundred and thirty-four ground truth
measurement points collected within 24 hours before and
after the SAR data acquisition on 19 April 2004. The
measurements were done on flat bare soil, high-density
mesquite trees, deciduous forest, and grassland.
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277 of 2 m in radius, and then, we took average of the 3
278 associated measurements at each measurement point. In
279 addition, the target areas for the ground truth measurements
280 must be chosen in the proximity of the ground control
281 points (i.e., corner reflectors) in order to minimize the
282 horizontal error of the ground truth points relative to the
283 SAR geometrically corrected.
284 [9] All ground truth measurements of soil moisture in this
285 study were collected within the top 5 cm of soil by using
286 The FieldScout2 TDR 300 soil moisture meter [see also Le
287 Hégarat-Mascle et al., 2003; Wilson et al., 2003; Spectrum
288 Technologies, Inc., 2004]. The TDR method has been
289 popular for it may provide measurements of in situ soil
290 moisture content with good accuracy in the work of Topp et
291 al. [1980], Roth et al. [1992], and Walker et al. [2001]. The
292 TDR 300 sensor rods used in our measurements were 12 cm
293 in length. We measured the soil moisture content on the top
294 5 cm of soil surface by inserting the probe at an angle of 25�
295 from the flat ground. Prior to use, the TDR probe was
296 calibrated against gravimetric measurement method within a
297 range between 10 and 50% moisture (converted the gravi-
298 metric to the volumetric moisture content). An average
299 value of three gravimetric measurements was used to
300 calibrate each TDR measurement.
301
302 3.2. Genetic Programming

303 [10] The well-known approach invented by Koza [1992,
304 p. 3] has given statements about the main point of genetic
305 programming as ‘‘. . .high-return human-competitive ma-
306 chine intelligence.’’ It generally approaches the solution
307 by evolving over a series of generations of regression model
308 using the evolutionary search based on the Darwinian
309 principle of natural selection (from J. R. Koza, http://
310 genetic-programming.org, last updated on 16 September

3112004). The principle of Evolutionary Computation (EC) is
312rooted from Genetic Algorithms (GA) first developed by
313Holland [1975], Evolution Strategies (ES) developed by
314Rechenberg and Schwefel [from Back et al., 1997], and
315Evolutionary Programming (EP) developed by Fogel et al.
316[1966]. All three of them were eventually combined into
317one entity called ‘‘Evolutionary Computation’’ [Gagne and
318Parizeau, 2004]. Under the EC framework, the Genetic
319Programming is generally considered as an extension of
320GA.
321[11] The GP is the heuristic iterative search technique that
322obtains the best solution in a given decision on the basis of
323an algorithm that mimics the evolution of genetic life forms
324[see also Cramer, 1985; Heywood and Zincir-Heywood,
3252002; Song et al., 2003]. It starts with solving a problem by
326creating massive amount of random functions in a popula-
327tion pool. This population of functions is progressively
328evolved over a series of generations. The search for the
329best result in the evolutionary process involves applying
330the Darwinian principle of nature selection (survival of the
331fittest) including crossover, mutation, duplication, and de-
332letion. Regression models generated from the GP are free
333from any particular model structure [Chang and Chen,
3342000]. It could be the best solver for searching highly
335nonlinear spaces for global optima via adaptive strategies.
336In recent years, the GP has been proved useful for solving
337highly nonlinear environmental problems [Chang and
338Chen, 2000].
339[12] The Linear Genetic Programming (LGP) expresses
340instructions as a line-by-line instruction. Execution of the
341program is a mimic of calculating multiple calculations in a
342normal calculator as simple line-by-line processing steps
343[Heywood and Zincir-Heywood, 2002; Song et al., 2003]. In
344this study we use the GP software called Discipulus

1

, which
345is developed by Francone [1998]. The codes are defined in
346terms of functions and terminal sets that modify the contents
347of internal memory and program counter. Discipulus

1

uses
348LGP algorithm to produce multiple lists of instructions
349representing models with the best fit to its training and
350calibrating data. While the training and the calibrating data
351are used as the basis genotype to build models, another
352independent data set is used to validate the generated
353models. The validating data are untouched by Discipulus

1

354during the process of modeling development. The validating
355data are used only to test the fitness of the surviving models.
356
3573.3. Integrated Framework

358[13] Figure 6 summarizes all the work flows of this
359analytical framework. The Alaska Satellite Facility (ASF)
360handled the image transcriptions and the level-0 processing,
361including radiometric and geometric calibrations, and geo-
362coding. The data, thereafter, were transferred to Texas for
363the level-1 processing, including georeference, translation,
364and data extraction. The translation was done only when the
365georeferencing process did not reduce the horizontal error
366less than RMSE of 12.5 m (i.e., SAR pixel size), which is
367the SAR pixels’ size. One scene of the CCRW image is a
368composition of many SAR images called frames. The
369frames were captured within approximately 15 s to compose
370a complete image of the watershed. Each frame was
371processed with the same algorithms to maintain consistency
372throughout all data. Since a complete image of the CCRW is
373composed of many frames, mosaicking was performed to

Figure 5. Sixty-three ground truth measurement points
collected within 8 hours before the SAR data acquired on 12
September 2004. The ground truths were done on evergreen
forest, raw crop, brush land, high-density mesquite trees,
and grassland.

XXXXXX MAKKEASORN ET AL.: SOIL MOISTURE PREDICTION

5 of 15

XXXXXX



374 combine frames together. However, the mosaicking proce-
375 dure must not be done before the data extraction because the
376 SAR data could be altered because of the image resample in
377 the mosaicking process.
378 [14] While the soil permeability map can be created from
379 STATSGO database, the NDVI data, derived from the
380 AVHRR sensor, may address the seasonal changes of
381 plants’ productivities. Slope and aspect data can be easily
382 derived from a Digital Elevation Model (DEM). After all
383 the input data (SAR, slope, aspect, soil permeability, and
384 NDVI) were calibrated and imported into the GIS frame-
385 work, the data are extracted from each layer and tabulated
386 for uses in later GP analyses. Once regression models were
387 developed from different attempts using GP as a means, the
388 best model can then be chosen for mapping soil moisture on
389 a watershed scale.
390 [15] Since most of the ground data in this study fall in the
391 frame 72, it was chosen as our reference frame for the
392 mosaic. The cutline method was employed for the mosaic to
393 maintain most of the frame image, which covered more than
394 70% of the study area. To generate images of soil moisture,
395 all the input data were imported into the ArcGIS framework
396 to process raster calculations. At the end of the raster

397calculations, an image of soil moisture is created smoothly
398according to the generated GP model.

4004. Data Synthesis and Processing

4014.1. SAR Data

402[16] This analysis counts on RADARSAT-1 SAR imag-
403eries acquired in April and September 2004. The standard
404beam mode in ascending orbits of RADARSAT-1 was
405selected for this study. The standard full-resolution imagery
406covers approximately 100 km x 100 km with the pixel size
407of 12.5 m (i.e., 25 m resolution). This implies any feature
408that is smaller than 12.5 m cannot be differentiated by
409RADARSAT-1 directly. The electromagnetic pulse used in
410RADARSAT-1 SAR is in the C-band frequency (5.3 GHz;
4115.66 cm wavelength) [ASF, 1999]. Speckle reduction caused
412by the surface terrain was not performed on the SAR data
413because of the flatness of the study region (i.e., the lower
414CCRW) [Zribi et al., 2005]. Furthermore, the speckle is
415considered as a property of the backscatter; thus there would
416not be a calibration problem because the pixel backscatter
417measurement is repeatable [Freeman, 1992]. Minimum
418number of image processing is our target in order to

Figure 6. Work flowchart of this study.
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419 minimize the alteration of backscatter measurements as
420 much as we practically can. Only normalized radiometric
421 correction to compensate for speckle due to the inherent
422 radar image distortion was carried out on the basis of the
423 ASF SAR Processing Algorithm [Olmsted, 1993]. The
424 spatial resolution of the processed data can be kept at its
425 original resolution.
426 [17] To ensure the accuracy of the data, radiometric and
427 geometric corrections were deemed necessary to all data with
428 the aid of corner reflectors [Freeman, 1992; ASF, 2002].
429 Radiometric calibration is required to assure the correct
430 interpretation and information of the signal. Geometric
431 (spatial) calibration is required to assure the correct dimen-
432 sions and position, and adjust for any distortion of the SAR
433 imagery. The corner reflector has been widely used for
434 calibration of SAR data from the early age of the technology
435 [Sarabandi et al., 1992; Sarabandi, 1994]. Before the
436 installation of the five corner reflectors, we used the Satellite
437 Tool Kit

1

(STK) (available at http://www.stk.com/) to deter-
438 mine the correct orientations for pointing our corner reflec-
439 tors to SAR acquisition pathway, and then the Two Line
440 Element (TLE) was used to determine the look direction of
441 each corner reflector after finding out its GPS coordinate, see
442 http://www.celestrak.com. In general, the two known back-
443 scatter measurements used by ASF constantly to perform the
444 SAR calibrations include the Amazon rain forest in Brazil
445 and site-specific corner reflectors installed in Alaska [ASF,
446 2002]. These midlatitude corner reflectors provide additional
447 references for both radiometric and geometric calibrations in
448 this application [TSS, 1996; Small et al., 1997; Williams,
449 2004]. To remove the center-bias phenomena and the back-
450 ground noise, the SAR data were processed from pixel
451 intensity to backscatter coefficient, s0 (sigma-naught). For
452 ASF’s purpose, s0 is defined as

s0 ¼ 10 � log a2 � d2 � a1 � n rð Þð Þ
� �

þ a3
� �

ð1Þ

454 where d is pixel intensity (0–255), a1 is noise scaling, a2 is
455 linear conversion, a3 is offset, and n(r) is noise as a function
456 of range. The coefficients are found in the Radiometric Data
457 Record (part of the CEOS leader file) [Olmsted, 1993]. The
458 s0 is expressed in decibel (dB). The s0 was, afterward,
459 converted to a digital number (DN) to be used for deriving
460 the soil moisture model as the following:

DN ¼ s0 * 10ð Þ þ 255 ð2Þ

463 [18] Thus the SAR imagery acquired in April 2004 was
464 geometrically corrected using ground control points, includ-
465 ing corner reflectors and even some more references, such
466 as street intersections, SPOT satellite imageries, and Digital
467 Ortho Quarter Quads (DOQQs) optical images. The RMSE
468 after the georeferencing became less than 8 m. The other
469 SAR imagery acquired in September 2004 was then recti-
470 fied on the basis of the April 2004 SAR data. By overlaying
471 the two SAR data together, the spatial error between the two
472 acquisitions can be minimized further. This technique is
473 normally used in multitemporal study to detect changes in
474 time. The RMSE eventually reaches a level of less than 2 m.

476 4.2. Slope and Aspect Data

477 [19] Both slope and aspect may directly influence the
478 return signals to the SAR sensor [van Zyl et al., 1993;

479Jeremy, 2002; Baghdadi et al., 2002; Le Hégarat-Mascle et
480al., 2002]. The required DEM data in this study can be
481downloaded from Texas Natural Resources Information
482System at http://www.tnris.state.tx.us/DigitalData/DEMs/
483dems.htm. Once the DEM is obtained and imported into
484the ArcGIS workspace, we used the ArcGIS 8.3 Slope
485function and Aspect function to derive the slope and aspect
486data, respectively. The Slope and Aspect functions are
487located under the Surface Analysis submenu in the Spatial
488Analyst Toolbar [ESRI, 2004a, 2004b]. Once the Slope
489function is open, the program would require an input
490surface, which is the DEM data. We specify the output
491measurement to be in percent slope by selecting the option
492percent. The output cell size in both slope and aspect
493analyses is maintained at 30 m as same as the pixel size
494of the DEM in order to minimize the discrepancies in data
495synthesis and processing.
496[20] On the basis of such rationale, Figure 7 summarizes
497the image of slope in the CCRW. The image shows percent
498slopes with a range from 0 to 131.5%. As stated before,
499aspect data are required to represent the direction of the
500slopes because the slope data derived in GIS platform only
501represent the magnitude of slopes, not the direction of the
502slopes. For deriving the aspect data, the DEM data, which
503were just used to derive the slope, are the only input
504required in the GIS software. The aspect is measured
505clockwise in 0� due north, 90� due east, 180� due south,
506270� due west, and 360� due north again [see ESRI, 2004b].
507Figure 8 summarizes the image of the aspect data with
508appropriate color indicator. The majority of the aspect
509values indicate the direction of slopes toward south (green)
510and southeast (cyan) directions that bear the similar natural
511directions of the stream system in the watershed.
512

Figure 7. Slope map showing the variation of slopes in the
CCRW. Most area below the Balcones zone is very flat and
is used mostly for agriculture and livestock. The upper area
is the Edwards Plateau that comprises hills.
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513 4.3. Soil Permeability Data

514 [21] In the field of Geotechnical Engineering soils can be
515 classified into groups and subgroups on the basis of their
516 engineering behavior. Many general characteristics of soils
517 can be used to express their description, but the grain size is
518 a common use in many classification systems [Das, 1999].
519 STATSGO is the State Soil Geographic Data Base devel-
520 oped by the United States Department of Agriculture–
521 Natural Resource Conservation Service (USDA-NRCS).
522 STATSGO was created by generalizing soil survey maps,
523 county general soil maps, state general soil maps, and state
524 major land resource area maps. More information can be
525 found at Earth System Science Center [2004]. The purpose
526 of using the soil map is to incorporate the soil permeability
527 into the model. The soil permeability refers to the ability of
528 water and air to move through saturated soil. The perme-
529 ability of soil is influenced by many factors, such as size
530 and shape of the soil particles, degree of saturation, and void
531 ratio. For a given soil, permeability is inversely proportional
532 to soil density. A map of soil permeability made up of 31
533 soil types in the CCRW is presented in Figure 9. The
534 development of soil moisture model would benefit from
535 incorporating soil permeability, measured in inch/hr, along
536 with some other geoenvironmental variables and SAR.

538 4.4. NDVI Data

539 [22] The NDVI data represent the density of plant growth
540 of the vegetation that covers the land [D’Souza et al., 1993].
541 It is a measurement of the density of green vegetation on the
542 ground. Not only does the NDVI represent the greenness,
543 but also it can roughly measure the features of land surface
544 as well. A total range of index values can correspond to
545 leaves, trees, shrub, grassland, forests, bare soils, exposed
546 rocks, sand, or snow [Weier and Herring, 1999]. All of

547those land surface features also give out different roughness
548[Gupta et al., 2002], and they consequently affect the radar
549backscatter. In addition, the density of plant growth could
550represent the depletion of soil moisture via transpiration.
551Thus the NDVI data may be used to estimate soil moisture
552in combination with SAR data.
553[23] The NDVI can be derived from a multispectral
554sensor’s data, such as Advanced Very High Resolution
555Radiometer (AVHRR) or LandSat. The NDVI values range
556from �1 to 1. Cloud cover is the common obstacle for this
557type of sensor. Masking out the cloud can be done by
558composing an image from multiple images acquired from
559the sequenced data.Weier and Herring [1999] approximated
560the corresponding values of NDVI to many land features.
561Very low values of NDVI (0.1 and below) correspond
562to barren areas of rock, sand, or snow. Moderate values
563(0.2–0.3) represent shrub and grassland, while high values
564(0.6–0.8) indicate temperate and tropical rain forests.
565Spatial variation of plant density and plant species would
566not be very phenomenal in this semiarid river basin. While
567the difference of soil moisture could vary within a few
568meters, the vegetation density could be relatively the same
569within a few acres. Considering the estimates of soil
570moisture for the whole watershed with an area of
57114,200 km2, 1-km pixel size of AVHRR-derived NDVI
572may still address 14,200 samples of land cover pattern in
573totality. The AVHRR is therefore chosen to derive NDVI in
574this study because of its shorter satellite repeat cycle. In
575applications, the NDVI is converted to digital number by
576adding 1 to the NDVI and then multiplying it by 100 to
577generate the digital number (DN) for use in the model. The
578DN value of NDVI, varied from 0 to 200, is thus used for
579developing the soil moisture model. The AVHRRNDVI data
580are provided by the USGS EROS Data Center (EDC) DAAC

Figure 8. Aspect map showing the major directions of
slopes are facing toward the south and the southeast. It is the
actual direction that the streams flow toward the Gulf of
Mexico.

Figure 9. Thirty-one classes of STATSCO soil classifica-
tions found in the watershed. The average permeability
(inch/hr) of the soils was included in the derivation of the
soil moisture model.
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581 [Distributed Active Archive Center, 2005]. The data sets
582 generated by USGS actually contain weekly and biweekly
583 NDVI composite products for public uses. The AVHRR
584 NDVI data used in the study were acquired in May and
585 September2004 to surrogate thechangesofvegetationdensity
586 during the wet and dry seasons (see Figures 10a and 10b). It
587 should also be noted that SAR may penetrate the sparse
588 vegetation cover because of having larger wavelength. Thus
589 the water content in vegetation would not significantly affect
590 SAR backscattering signals in this semiarid vegetation area.
591
592 4.5. Model Development for Soil Moisture Estimation

593 [24] Overall, the backscatter might be more strongly
594 influenced by roughness than soil moisture. This is because
595 grain size is an order of magnitude or more smaller than the
596 roughness element (clods, clumps and row structures) that
597 drive the ‘‘roughness’’ response in the backscatter signal on
598 the order of mm to cm. While it is true that soil texture or
599 grain size plays a role in how cloddy or rough a soil will be
600 after tillage, it is the tillage that determines the size of clods
601 in agricultural area. Yet it is impossible to keep track of the
602 changes of roughness in the dynamic system all by the in
603 situ measurement in the watershed with an area of over
604 14,200 km2, whereas this type of measurement can be done
605 easily in a small study area. Therefore integrative use of the
606 soil permeability addressing the feature of soil texture and
607 the NDVI values implying the inherent density of plant
608 species are used to collectively reflect some sort of surface
609 roughness in the GP model development. This would also
610 reduce the possible correlation among exogenous variables
611 in the model from a statistical sense. The model should also
612 be valid to some other watersheds where the soil perme-
613 ability may fall into the same range, between 0.5 in/hr and

6143.7 in/hr, as the soil permeability values found in this
615watershed.
616[25] To increase the model credibility two thirds of both
617data sets collected from the two ground truth campaigns
618were combined together for model calibration and one third
619of them were randomly picked out for model validation.
620Only the samples with the soil moisture less than 50% are
621adopted in ground truth campaigns because the TDR probe
622was normally calibrated in the range of 0 to 50%. This is of
623concern because some soil contains high content of salinity
624which induces error in probe readings abnormally and the
625gravels in the soil did affect the probe readings as well.
626[26] Data extraction, which is required for model devel-
627opment, is a process of retrieving the value of the pixel that
628lies underneath the ground truth measurement point. First,
629all the data have to be imported into the same coordinate
630system in GIS workspace. The ground truth database may
631provide a set of accurate locations using the submeter GPS.
632Then we may extract those associated values of NDVI,
633slope, aspect, soil permeability, and backscatter coefficient
634(s0) from individual map layer based on the GPS measure-
635ments, respectively. Even though there are discrepancies of
636cell sizes in different input databases when preparing for
637regression analysis, with such a data extraction strategy
638there is no need to resample data spatially in order not to
639disturb the data integrity. Most importantly, SAR data are
640not averaged for use in regression. Thus the required data
641are eventually extracted one layer at a time using GRID-
642SPOT add-in script developed by Rathert [2003]. The data
643are then exported into Microsoft

1

Excel and are randomly
644shuffled. The shuffled input data (i.e., two thirds of the
645ground truthing data points) are then fed into the GP model
646for calibration. Once the model can be properly calibrated,

Figure 10. Maps of AVHRR NDVI images for (a) May 2004 and (b) September 2004 showing high
values of greenness along the river corridor (shown in dark blue). The plowed land and farms are likely
presented in orange and yellow. Texas brush land, ranches and grassland are shown in dark and light
greens. Red area in the maps indicates the water body of the Choke Canyon Reservoir.
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647 validation may be performed by using the rest of data points
648 (i.e., one third of the ground truthing data points). The
649 outputs using the calibrated soil moisture model can be
650 compared against the unseen ground truth soil moisture
651 samples (i.e., the validating data set). The estimation of soil
652 moisture, as a consequence, is expected to be a function of
653 the SAR data, the surface slope, the aspect of slope, the soil
654 permeability, and the NDVI, as expressed below:

VWC ¼ fn V0;V1;V2;V3;V4ð Þ ð3Þ

656 where VWC is the percent volumetric water content in soil,
657 V0 is the SAR backscatter coefficient that is converted to
658 DN value (0–255), V1 is the slope value in percent, V2 is
659 the aspect value in degree, V3 is the STATSGO soil
660 permeability (in/hr), and V4 is the NDVI that is converted
661 to digital number (0–200).

663 5. Results and Discussion

664 [27] A GP-derived soil moisture model was proved useful
665 to accommodate the soil moisture estimates of the CCRW.
666 With the aid of the GP algorithm, the soil moisture model is
667 shown in equation (4). The model is presented in forms of
668 compound functions because of the high complexity of its
669 nature.

671 GP Model:

Soil Moisture % volumetricð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � jA1 *V0j þ V4ð Þ

p
þ 4 � A3ð Þ � 4 � V3ð Þ � V1

0:924

ð4Þ

A1 ¼ jCos A2ð Þj
V3

� jSin A5ð Þj þ 2 � A8ð Þ2

A2 ¼ jSin A5ð Þj þ V4

0:924

A3 ¼ A4� jSin A5ð Þj

A4 ¼ 2 � Sin 2 � A9ð Þ2
� �h i2

A5 ¼
Sin Cos

ffiffiffiffiffiffi
A6

p
þ V4

� �� �
V3

( )
þ V4

A6 ¼ 2 � A7ð Þ þ 4 � A8ð Þ þ 4 � V4ð Þ

A7 ¼ 1

0:16 � A4ð Þ

� �2
A8 ¼ Sin 2 � A9ð Þ2

� �
A9 ¼ 2 � V4ð Þ þ Cos 0ð Þ þ 1:03

675 Note that independent variable V2 is not included in this
676 best selected GP model. V0 is SAR backscatter coefficient
677 (digital number: 0–255); V1 is slope value in percent (%);
678 V3 is soil permeability (in/hr); and V4 is NDVI (digital
679 number: 0–200).
680 [28] The effect of slope in the estimates of soil moisture
681 in the GP-derived model is only valid where the slope is
682 below 2% in this study. The first reason is that the model
683 was calibrated with the slope values less than 2%. There

684was no ground truth in the steep slope area where the soil
685moisture measurement was taken. Therefore the model
686cannot estimate soil moisture where the slope value is out
687of range. Second, the majority of the CCRW are flat and
688thus the terrain correction algorithm, which is normally used
689to compensate for foreshortening and shadowing phenom-
690enon, was not applied to the SAR data. Because of this
691reason the slope and aspect information was purposely
692included into the GP model to compensate for the lack of
693terrain correction.
694[29] In the GP model, ‘‘frequency of use’’ would be the
695only way to quantitatively delineate the relative importance
696of input factors (i.e., exogenous variables) being included in
697the regression models. ‘‘Appearing frequency’’ in the evo-
698lutionary computing process provided by Discipulus

1

was
699employed to evaluate the relative importance of those
700exogenous variables. After GP had generated millions of
701evolutionary models, each input factor was counted as how
702many times the input factor was used in the models in a way
703that contributes to the fitness of the models. A value of
704100% (i.e., frequency of use) indicates that the input
705variable is used in 100% of the generated models. Table 2
706summarizes the statistics. It shows SAR, soil permeability,
707and NDVI are mostly important in all scenarios. Slope and
708aspect, however, are relatively not as important as the other
709parameters in the models for estimating soil moisture since
710slope and aspect data were used only 70% and 50%,
711respectively. Higher ‘‘appearing frequency’’ of the NDVI
712data in the model selection process indicates that vegetation
713greenness is equally important predictor of soil moisture as
714backscatter since vegetation greenness is physically related
715to soil moisture via transpiration. The best model chosen out
716of many millions of generated models does not include the
717aspect data eventually. To validate the GP models, the
718calculated soil moisture values were compared against
719the measured soil moisture values in the unseen sub–data
720set pair-wise. Figure 11a reflects a summary of a compar-
721ison between the measured soil moisture and the estimated
722soil moisture based on the April 2004 data set. The model
723presents the value of R-square of 0.72 and the values
724of corresponding RMSE of 3.4%. On the other hand,
725Figure 11b demonstrates the same comparison using the
726value of R-square of 0.69 and the value of RMSE of 2.3%
727based on the September 2004 data set.
728[30] Research findings also indicate that the ground truth
729measurements with larger value of soil moisture are likely to
730generate disturbance in model development (see Figures 11a
731and 11b) because the TDR probe is normally calibrated for
732soil moisture levels that are below 50%. Also, the more the
733soil moisture measurements spreading out of the normal
734range, the higher the chance that it may inherently bear with

t2.1Table 2. Relative Importance Analysis for Input Factors in the

Regression Models

Input Frequency of Use, % t2.2

Backscattering coefficient 100 t2.3
Slope 70 t2.4
Aspect 50 t2.5
Soil permeability 100 t2.6
NDVI 100 t2.7
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764 more measurement errors. Further, the different salinity
765 content in soils area wide might also affect the measurement
766 accuracy. Yet soil salinity measurement using remote sens-
767 ing, such as the Scanning Low Frequency Microwave
768 Radiometer (SLFMR) [Le Vine et al., 1994, 1998], in such
769 a vast watershed is out of current research capability in
770 remote sensing community.
771 [31] With the aid of soil moisture model derived by the
772 GP technique, Figures 12a and 12b present the soil moisture
773 estimations watershed wide. The grid cell resolution of
774 Figures 12a and 12b is kept at 25 m. Two maps of soil
775 moisture were eventually generated on the basis of the same
776 soil moisture model derived in equation (4). Figure 12a
777 shows the map of soil moisture in April 2004 that has a
778 mean soil moisture value of 16.3% by volume. Figure 12b
779 shows the map of soil moisture in September 2004 that has
780 a mean soil moisture value of 15.5% by volume. High
781 values of soil moisture are present along the river corridors
782 in both maps.
783 [32] The soil permeability shows a significant effect in
784 the estimates of soil moisture in the model. According to
785 equation (4), the soil permeability ‘‘V3’’ is a subtrahend and
786 a denominator in different part of expressions in the model
787 simultaneously. Obviously the soil moisture decreases as the

Figure 11. (a) Plot of measured versus calculated soil
moisture of the unseen samples collected in April 2004. The
unseen samples used in the calculations are independent
from the samples used to calibrate the model. (b) Plot of
measured versus calculated soil moisture of the unseen
samples collected in September 2004. The unseen samples
used in the calculations are independent from the samples
used to calibrate the model.

Figure 12. (a) Soil moisture map derived from RADAR-
SAT-1 SAR data acquired in April 2004 and the supple-
mental data. The average volumetric soil moisture is 16.3%.
The low estimates of soil moisture at the top area are due to
the high percent slopes. The patch of low soil moisture at the
center in the map occurs from the large value of soil
permeability. The high values of soil moisture at the bottom
of the map occur from the very small values of soil
permeability. (b) Soil moisture map derived from RADAR-
SAT-1 SAR data acquired in September 2004 and the
supplemental data. The average volumetric soil moisture is
15.5%. The extreme values of percent slope and soil
permeability affect the estimation of soil moisture similarly
to Figure 12a.
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788 soil permeability increases. This is a reason for Figures 12a
789 and 12b to show a patch of very low soil moisture at the
790 center of the maps due to the very high value of soil
791 permeability as evidenced in Figure 9. Similarly, the patches
792 of high soil moisture areas at the bottom of Figures 12a and
793 12b are due to the very low soil permeability as evidenced in
794 Figure 9 too. This phenomena follows the physical sense that
795 the soil with high permeability allows water and air to move
796 more freely, thus it retains less water content. According to
797 equation (4), the slope parameter is a subtrahend. It confirms
798 that the increases of slope reduce the water content in the
799 soil. Obviously the steep slope (large value of slope) would
800 generate more runoff, and this drains the water from the soil
801 more. This explains why there is a presence of very low soil
802 moisture patch at the top of Figures 12a and 12b because of
803 the high values of slope as evidenced in Figure 7.
804 [33] The effects of the NDVI to the soil moisture can be
805 analyzed by two scenarios. First, high value of the NDVI
806 refers to high density of plants’ leaves or high greenness in
807 canopy level. This could imply the abundance of water
808 available in the soil that the plants can use for their
809 photosynthesis. It could also imply that the evapotranspira-
810 tion is supportive for carboxylation where the NDVI is high.
811 The second scenario could be the opposite in a way that
812 high density of plants’ leaves causes high transpiration rate,
813 and consequently the soil moisture should be low because
814 of the water depletion. However, the second scenario has a
815 flaw that if the water available in the soil is low, how could
816 the plants maintain high productivities (indicated by the
817 density of green leaves)? Thus the first scenario has the
818 higher probability of being true. According to the model
819 (equation (4)), the NDVI parameter only adds its value into
820 the model since it is never being used as a subtrahend. It
821 may be concluded that the NDVI implies the abundance of
822 water content in the soil rather than the depletion of the soil
823 moisture.
824 [34] The question ‘‘why use radar images for soil mois-
825 ture estimation when NDVI is so readily available?’’ can be

826answered on the basis of such findings now. On the basis of
827the model in equation (4), it indicates that vegetation
828greenness is an equally important predictor of soil moisture
829as backscatter. Even though the AVHRR-derived NDVI was
830used to support the modeling analysis with 1-km spatial
831resolution, spatial variation of plant density and plant
832species would not be phenomenal in this semiarid river
833basin and the modeling outputs as shown in Figure 12 can
834still maintain the resolution of 25 m. Although order of
835magnitude difference in speckle over a few pixel domains
836will negate site specific results, the model was not derived
837by using averages of several pixels of SAR measurements in
838model development. Data extraction was made for the SAR
839measurement and its corresponding value of ground truth by
840referring to the GPS record having submeter accuracy.
841Hence speckle noise across pixels is not a main concern
842here.
843[35] It is very difficult to determine the soil roughness
844because of several factors that influence the roughness over
845such a vast watershed. The roughness of the same type of
846soil can be totally different depending on its use. In situ
847measurement of the soil surface roughness in such a vast
848watershed is impossible. The surface roughness, a factor
849that could be more significant than soil moisture in deter-
850mining backscatter coefficient, can be collectively
851addressed by the NDVI and the soil permeability in the
852model. In our study area, the NDVI values do not have
853drastic change over time. This is true at least for three types
854of land covers, including pasture, shrub, and riparian buffer.
855Only crop row may have a relatively big change, as
856evidenced by Figure 13. This is a supportive finding for
857the modeling work since we have tried to use the NDVI to
858address part of the surface roughness effect.
859[36] For the purpose of comparisons, this study also
860developed some multiple linear and nonlinear regressions
861using stepwise approach with all related input variables. As
862shown in equations (5), (6), and (7), a multiple linear
863regression and two multiple nonlinear regressions were

Figure 13. Box plots presenting NDVI values corresponding to various types of land cover over a time
period from April to September 2004. NDVI of row/crop increased. NDVI of pasture changed
insignificantly over the time period. The shrub area responded to a wider range of NDVI values in
September than in April. The NDVI of the riparian area dropped over the time period.
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864 created in order to compare the outputs against those from
865 the GP model. In the process of developing the two
866 nonlinear regression models, a conventional power law type
867 fit is calibrated including eleven coefficients and the five
868 independent variables. As an alternative another nonlinear
869 regression is created with a higher degree of complexity by
870 fusing many nonlinear forms that best fit individual inde-
871 pendent variable. This process mimics the law of nature
872 selection, which is similar to the selection algorithm which
873 is utilized by the genetic programming, by manually select-
874 ing the regression type that best fits each independent
875 variable to the ground data pair-wise. The selected forms
876 of regression are fused together to form the second nonlin-
877 ear regression model as shown in equation (7). Fourteen
878 coefficients and five independent variables are included.

880 Linear regression:

Soil Moisture % volumetricð Þ ¼ �1:016þ 0:084 V0ð Þ
� 4:021 V1ð Þ � 0:002 V2ð Þ � 9:126 V3ð Þ þ 0:138 V4ð Þ ð5Þ

882Nonlinear regression 1:

Soil Moisture % volumetricð Þ ¼ �18:299þ 63:98 � V0ð Þ�0:516

þ 89:62 � V1ð Þ�0:025þ 27:79 � V2ð Þ�0:602þ 155:33 � V3ð Þ�0:041

� 603:92 � V4ð Þ�0:196 ð6Þ

884Nonlinear regression 2:

Soil Moisture % volumetricð Þ ¼ 10:890 þ 29063844:9

772415:4þ V0

� 15:309 � V1ð Þ0:24 þ 1:063

0:036 � V2ð Þ�0:613
� 57:064 V3ð Þ

þ 36:608 � V3ð Þ2 � 2:738 � V3ð Þ3 � 0:961 � V3ð Þ4

þ 727313:0

3738763:4þ V4
ð7Þ

886where V0 is the SAR backscatter coefficient that is
887converted to DN value (0–255), V1 is the slope value in
888percent, V2 is the aspect value in degree, V3 is the
889STATSGO soil permeability (in/hr), and V4 is the NDVI
890that is converted to digital number (0–200).
891[37] The correlation between the measured soil moisture
892and the calculated soil moisture in the linear regression
893model and the two nonlinear regression models are weak.
894The highest r-square value was only 0.36 at its best with the
895RMS error of 8.9%. Table 3 concludes the evaluation of
896these models on the basis of the same criteria. Figure 14
897presents box plots of the observed and predicted soil
898moisture. The GP model shows the best result that most
899resembles the observed data with somewhat similar inter-
900quartile range. On the other hand, the linear and nonlinear
901regression models produce results with approximately a half
902interquartile range of the observed data. In regard to the

t3.1 Table 3. Statistical Evaluation of Regression Models (Unseen

Data Are Used)

Model

R-Square
RMS Error,
% vwct3.2

APR
Data

SEP
Data

APR
Data

SEP
Datat3.3

GP model 0.72 0.69 3.4 2.3t3.4
Multiple linear regression model 0.36 0.34 8.9 10.1t3.5
Nonlinear regression model 1 0.27 0.36 11.5 9.4t3.6
Nonlinear regression model 2 0.30 0.33 11.8 8.8t3.7

Figure 14. Box plots of observed and calculated soil moisture generated from different models. The
result of GP model represents very similarly to the observed data. Its interquartile range is almost as wide
as the interquartile range of the observed data, while the other models only result in a half of the
interquartile range. Obviously the linear regression model results in the overestimation, and the two
nonlinear models result in the underestimations.
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903 estimations, the linear regression model tends to overesti-
904 mate soil moisture, while the nonlinear regression models
905 tend to underestimate soil moisture. By comparing equa-
906 tions (4), (5), (6), and (7) in totality, the nonlinear structure
907 of the GP model generated is viewed solid than the other
908 counterparts. As opposed to the conventional nonlinear
909 regression models, GP increases the chance of developing
910 successful nonlinear functions because of its unbounded
911 complexity. Yet the attempt to mimic the law of nature
912 selection by manually selecting a best fit regression type
913 takes a lot of time and efforts. While GP seeks the best
914 forms of regressions through millions of selections, it is
915 impossible for a human to do the equivalent task. It can be
916 concluded that the GP-derived model in this study is much
917 better than its counterparts no matter if they are either
918 multiple linear or nonlinear regression models.

919 6. Conclusion

920 [38] This study presents a systematic data synthesis and
921 analyses that lay down the foundation for the multitemporal
922 soil moisture estimation in the study area. It uniquely
923 demonstrates the use of remote sensing of hydrologic
924 fluxes, states, and parameters, including combined active
925 microwave and optical observations, to improve the under-
926 standing of the soil moisture variability in the terrestrial
927 hydrosphere. The GP-derived soil moisture model is proved
928 useful to identify the correlations between soil moisture
929 measurements, SAR backscatter coefficient, geographical
930 and topographical features at a watershed scale. The
931 slope and the aspect (direction of slope) were particularly
932 included in the development of the models to enhance the
933 formulation credibility but are proved insignificant in this
934 terrain because of the flatness. Yet the NDVI and soil
935 permeability data may significantly influence the estimates
936 of soil moisture. The GP model exhibits a credible record
937 supported statistically by R-square value of 0.72 and RMSE
938 of 3.4 based on the April 2004 data set, and R-square value
939 of 0.69 and RMSE of 2.3 based on the September 2004 data
940 set. When comparing to the multiple linear and nonlinear
941 regression models, the GP model provides an acceptable
942 agreement with observed measurements under conditions in
943 which slope is less than 2% on average in the lower portion
944 of the CCRW.
945 [39] Such a case study in Texas promotes the scientific
946 justification of new measurements, involving satellites and
947 artificial intelligence algorithms that potentially support
948 several key scientific regimes: (1) the application of new
949 technologies for remote sensing hydrologic quantities for
950 terrestrial hydrologic interpretation; (2) completion of stud-
951 ies on appropriate spatial and temporal sampling scales of
952 new synergy of optical and microwave sensors for satisfy-
953 ing specific scientific objectives; and (3) enhancement the
954 information on flood and drought prediction systems indi-
955 rectly, which is deemed ecologically important for the basin
956 management authority, especially in the semiarid coastal
957 region, south Texas.
958 [40] Comparing the work to others [Moran et al., 2000;
959 Salgado et al., 2001; Glenn and Carr, 2003], this GP-
960 derived soil moisture model provides a nonlinear functional
961 form that enhances hydrologic model capability and perfor-
962 mance through modern data collection, assimilation, and
963 analysis techniques to incorporate remotely sensed obser-

964vations, which may include efforts to resolve spatial scale
965discrepancies between in situ and satellite observations. The
966quantification of soil moisture will be used to estimate water
967availability of the watershed in general seasons in order to
968assist hydrologists, engineers, and stakeholders in managing
969water resources in this semiarid watershed. Such develop-
970ment also serves the scientific basis in the future for
971observing and modeling large scale terrestrial water-storage
972dynamics with emphases on how these processes are
973affected by the heterogeneity of soil, vegetation, precipita-
974tion, and topography and even their interaction with various
975biogeochemical cycles.
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