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Abstract 
 
A frequency domain boundary element method is presented to study the seismic response 
of single piles to vertically propagating shear waves within a poroelastic medium. 
Nondimensional kinematic displacement factors are presented for the elastic and 
poroelastic responses of the pile. The treatment of the soil as a multi-phase poroelastic 
material is found to result in reduced displacements due to additional damping from the 
fluid phase.  
 
Introduction 
 
The dynamic response of piles and drilled shafts subjected to impinging seismic waves is 
of critical importance in the study of soil-structure interaction. Traditionally, such 
problems have been studied using linear elastic analysis. There has been little emphasis 
on modeling the soil as a multi-phase porous material. The present paper will model the 
soil as a saturated, poroelastic material governed by Biot’s poroelastic theoretical models. 
The Boundary Element Method (BEM) will be utilized for the solution scheme since it 
has established itself as the ideal method for the study of wave propagation in infinite and 
semi-infinite media such as soils and rocks. The seismic behavior of a single pile 
foundation subjected to vertically incident shear waves is investigated in this paper. 
 
Governing Equations and Integral Formulation 
 
Dynamic poroelastic analysis finds its roots in the general theory of Biot (1956) 
governing the behavior of two-phase fluid-filled media such as soils. The inherent 
complexity of the associated phenomena prevents the development of analytical solutions 
for all but the simplest of geometries and boundary conditions. Consequently, the use of 
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numerical methods such as finite element and boundary element methods becomes 
imperative. In particular, the boundary element method (BEM) is quite attractive for 
semi-infinite media, at least in situations where the media can be modeled as piecewise 
homogeneous. Early work on the fundamental solutions and BEM formulations for 
dynamic poroelasticity may be attributed to Bonnet (1987), Boutin et al. (1987), 
Predeleanu (1984), Cheng et al. (1991) and Dominguez (1991). Recently, Chen and 
Dargush (1995) presented a Laplace domain transient BEM for both two- and three-
dimensional dynamic poroelastic analysis. Dargush and Chopra (1996) presented a 
frequency domain solution for the dynamic response of circular foundations using a 
poroelastic formulation and Dargush and Chopra (1998) applied the Laplace domain 
formulation to the seismic response of sedimentary basins. The present work is based on 
these previous developments and is extended to the study of the response of single piles 
to impinging seismic waves. 
 
The governing equations of the theory of dynamic poroelasticity may be reduced in the 
transform domain to the following equations of momentum and mass balance: 
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in which all Latin indices assume the values 1,2,3 for three-dimensional domains and a 
superposed tilde is used to denote a Fourier transformed variable. Commas indicate 
derivatives with respect to spatial coordinates. In equation (1), ui is the displacement of 
the soil skeleton, p is the excess pore water pressure, λ and μ are the drained Lame 
constants and k is the coefficient of permeability. The symbols ψ and fi denote the 
volumetric body source rate and body force terms. Based on Biot (1956), 

ζωραα fi−=1 , and  with the porosity of the 
soil as n. The quantities ρ

ζωρρρ fi 2
1 −= 1)//1( −+= nik fωρζ

 and ρf are total and fluid densities, respectively. Remaining 
Biot parameters α and Q are compressibility parameters and can be related to Skempton’s 
pore pressure parameter B and the undrained Poisson’s ratio νu.  
 
An exact integral representation may be developed from equation (1) in a systematic 
manner as shown, for example, in Chen and Dargush (1995). In the absence of distributed 
body forces or body sources, the resulting boundary integral equation for a poroelastic 
domain V with a bounding surface S, may be expressed as: 
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where { }Tqtttt ~,~,~,~

321=β and { }Tpuuuu ~,~,~,~
321=β are the generalized tractions and the 

generalized displacements, respectively and q~ denotes the normal volumetric flux. All 
Greek indices assume the values 1,2,3,4 for three-dimensional analysis. The terms 
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involving Mij represent the contributions of the seismic source (Aki and Richards, 1980), 
which is modeled as the summation of discrete moment tensors located at the N points xn. 
The displacement and traction kernels are denoted by G*

ij and F*
ij respectively. Matrix 

components Cβα depend upon the local geometry at the point ξ and reduce to δβα/2 at a 
smooth boundary where δβα represents a generalized Kronecker delta function.  
 
The dynamic poroelastic kernels in three-dimension are provided in Chen and Dargush 
(1995). A closer examination of the displacement kernels reveals a presence of a third 
wave in addition to the two body waves. The third wave corresponds to another 
compressional wave adding to the pressure and shear wave from elastic wave propagation 
theories. It is notable in equation (2) that for homogeneous poroelastic regions, the entire 
integral equation is surface-only in nature and does not involve variables at any interior 
points in the solution process. The only volume contributions come from treating the 
seismic moment sources as body source terms, which are assumed to be completely 
known apriori. Thus, the introduction of the poroelastic fundamental solutions have 
reduced the dimensionality of the problem by one. Piecewise homogeneous regions may 
be accommodated using multiple regions, which is the technique used to model the pile 
embedded within the soil mass.  
 
Numerical Applications 
 
Problem Description – Single Pile 
 
The Laplace domain poroelastic BEM formulation is now used to study the response of a 
single pile to a vertically propagating harmonic shear wave. The impinging wave 
produces a horizontal oscillation of Uff exp (iωt) at a “free-field” point on the surface of 
the soil at a location unaffected by the presence of the pile. The following non-
dimensional geometric property is selected for the analysis: L/d = 40, where L is the 
length of the pile and d is its diameter. The poroelastic material is assumed to have the 
following properties: νS = 0.4, μS = 0.1786, porosity nS = 0.3, α = 1.0, Q = 1.31, ρ = 1/2 
and kS = 1.1x 10+1. The properties of the pile are: νP = 0.4, porosity nP = 0.3, α = 1.0, Q = 
3.0, ρ = 1/2 and kP = 1.1x 10-3. Other related properties are non-dimensional in nature 
such as: ρS/ρP = 0.7 and EP/ES = 1,000 and 10,000. In addition, a hysteretic damping 
factor β of 0.05 is included for the soil.  
 
A sensitivity analysis is first conducted to ensure that the seismic source is placed deep 
enough to produce almost uniform displacements at the soil surface. The mesh is 
terminated far enough from the pile location to have a minimal effect on its response.  
 
Results 
 
The seismic response of the single pile to the S wave is portrayed using kinematic 
displacement factors, which is defined as the magnitude of pile head displacement (either 
elastic or poroelastic) normalized with respect to the elastic free-field displacement at the 
soil surface. Initially, an elastic BEM analysis was conducted to compare the results with 
published literature to gain confidence in the seismic source technique using moment 
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tensors. The BEM results from an elastic analysis for EP/ES = 1,000 and 10,000 are 
shown in Figure 1 along with the results from Fan et al. (1990). The correlation is fairly 
good considering the seismic source is modeled using one source point at a depth of    
Dsource/d = 200, where Dsource is depth of the source below soil surface.  
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5

a0

I u=
|U

p|/
U

ff

Fan et al (1990),
Ep/Es=1000
Fan et al. (1990),
Ep/Es=10000
BEM-Elastic,
Ep/Es=1000
BEM-Elastic,
Ep/Es=10000

 
Figure 1. Response of a single pile to impinging seismic SV wave – elastic BEM solution 

compared with Fan et al. (1990). 
 
Next, the poroelastic BEM formulation is used to study the seismic response of the same 
pile where the soil and pile are modeled as poroelastic media. The poroelastic response is 
significantly damped due to the presence of the fluid phase and this is evident from the 
results of the present analysis. Figure 2 shows the normalized kinematic displacement 
factor for poroelastic behavior in comparison with the corresponding elastic response for 
the modulus of elasticity ratio of 1000 as a function of the soil permeability k. Lastly, the 
same response is presented in Figure 3 for EP/ES = 10000. In each case, the amplitude and 
duration of the poroelastic response is significantly lower.   
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Figure 2. Poroelastic Response of a Single Pile subjected to an impinging SV wave for 
Ep/Es = 1000 
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Figure 3. Poroelastic Response of a Single Pile subjected to an impinging SV wave for 
Ep/Es = 10000. 
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