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SUMMARY

A time domain boundary clement method (BEM) for evaluating stresscs in an axisymmetric soil mass
undergoing consolidation has been developed. Previous BEM work on axisymmetric poroelasticity for
boundary displacements and pore pressures is extended to permit the computation of stresses at both
boundary and interior points. The stress formulation preserves the surface-only discretization.

The boundary displacement integral equation is progressively differentiated to obtain the related stress
and strain integral equations. Explicit expressions for the steady-state axisymmetric fundamental solutions
are derived in this process. The transient components of the integrands are obtained directly from the
transformation of the three-dimensional kernels into a cylindrical system. Numerical implementation of
these integral equations is carried out within a general purpose BEM computer code and several illustrative
examples are presented to validate the method.

INTRODUCTION

Within the realm of geotechnical engineering, it is often of great importance to determine the
stresses in a soil mass subjected to quasistatic loading. The present paper aims to develop
a numerical technigue for the evaluation of these stresses within a poroelastic body. In addition,
a number of such problems in practice involve axisymmetric geometrics. The reduction in
dimensionality of the problem leads to substantial benefits in computational time and effort.

Biot! was the first to develop a general three-dimensional theory of soil consolidation.
However, after the birth of this theory, only a few analytical solutions to the differential equations
exist in the literature (e.g. References 2 and 3). In general, for solving realistic practical applica-
tions, numerical methods such as the finite element method (FEM) and the boundary element
method (BEM} have been utilized. Initially, FEM was applied to the field of poroelasticity by
Sandhu and Wilson* and Ghaboussi and Wilson.? This was followed by several other workers
using FEM. More recently, BEM has emerged as an attractive alternative to FEM due to
a surface-only solution methodology based upon the boundary integral equations. The increased
popularity of BEM is evidenced in its application to a number of fields including soil consolida-
tion.
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In particular, the first application of BEM to quasistatic soil consolidation was done by
Banerjee and Butlerfield® via a volume-based staggered approach to the coupled equations. In
this approach, the transient flow equations were first solved at each time step, followed by
a deformation analysis for that instant. Aramaki and Yasuhara’ utilized this volume-based
approach for solving axisymmetric problems. On the other hand, Cheng and Liggett® ® solved
two-dimensional problems of soil consolidation by employing Laplace domain fundamental
solutions.

Dargush and Banerjee!® have presented a time domain boundary-only BEM for soil consoli-
dation in two and three dimensions based upon the fundamental solutions of Nowacki,'!
Cleary'? and Rudnicki.!® This formulation was the first to suitably verify the solutions with
closed-form solutions and was sufficiently general to serve as a practical tool. Subsequently,
Dargush and Banerjee'* extended this formulation to axisymmetric problems. The method was,
however, restricted to the computation of primary surface quantities only. The present work is
based upon this method and aims to extend it to enable the determination of stresses and strains
at any point, either on the surface or in the interior, of the consolidating soil mass. The primary
advantage of a boundary-only discretization is preserved in the present implementation. In fact,
only a line representing the generator of the axisymmetric solid needs to be modelled. The entire
formulation is carried out exclusively in time domain leading to very accurate results.

The next section discusscs the coupled differential equations that govern Biot’s theory of soil
consolidation in three dimensions. Next, the integral formulations for displacements and stresses
for the axisymmetric case are presented. Based upon the previous work, the three-dimensional
fundamental solutions are decomposed into the steady and non-steady parts and then are
suitably transformed into their axisymmetric counterparts. This is followed by progressive
differentiation of the boundary displacement integral equation to obtain the integral formula-
tions for stress and strain at an interior point within the soil mass. The fundamental solutions
associated with the interior siress and strain behaviour are derived in the process. Surface stress is
determined directly in terms of primary boundary variables, using the well-established method
used in elastostatics,

Spatial and temporal discretizations are carried out Lo render the exact integral formulations
suitable for practical analysis. Some illustrative examples of stress analysis are presented to
establish the accuracy and validity of the present development. Standard indicial notation is used
wherein a comma represents differentiation in space, a superposed dot a time derivative and
repeated indices are summed.

GOVERNING EQUATIONS

Terzaghi'® first laid down the theoretical foundation to soil consolidation with the introduction
of the effective stress concept. Subsequently, Biot! generalized Terzaghi's one-dimensional theory
for saturated soils to the three-dimensional, partial saturation case. The eflective stress concept, in
generalized co-ordinates, may be expressed as

O-t'j = U;J - 5ijﬁup (]a)

where a;; is the total stress state, a; is the effective stress state, u,, is the excess pore water pressure,
d;; 18 the Kronecker deita and f is a dimensionless material parameter relating the compressibili-
ties of the solid and fluid constituents and may be expressed as (e.g. Reference 16)

K

ﬁ=1—E (1b)
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wherc K = 1 + %,u is the bulk modulus of the soil under drained conditions and K is an arbitrary
constant which reduces to the bulk modulus of the solid skeleton under certain specific condi-
tions. The constants A and yx are Lame’s elastic constants under drained conditions.

The governing equations for coupled quasistatic poroelasticity (CQP) may be written as'?

(A + Wuj y + pug, g — fuy; + b=10 (2a}

Kl ;— Oty — Pty ; + 4 =0 (2b)

where x is the permeability and « = 2/(A, — A). In equation (2), u; denotes the displacement

vector, b, is the body force vector per unit volume, y is the rate of fluid supply per unit volume and
A, 15 the undiained clastic modulus.

In order to establish the undrained constants, it is desirable to determine the undrained bulk
modulus (K,), which can be measured with ease. This is done through the use of the undrained
Poisson’s ratio, v,, which is given by

3Ky + 2

" 6K, v 2 &

Thus, the constants # and « can now be cxpressed in terms of the undrained bulk modulus as

,3=%[1 —II:} (4a)
a= K‘BB (4b)

where B is the well-known Skempton’s coefficient of pore pressure.
The material parameter determining the rate of diffusion is called the coefficient of consolida-
tion, c,, and is given by
2un(l — v} BE{1 + v,)*(1 — 2v)
c, = —
(1—=2v) [ 9 (u— vl —w)

(5)

BOUNDARY INTEGRAL FORMULATION FOR AXISYMMETRY

In the absence of body forces and sources and under zero initial conditions and by utilizing the
analogous thermoelastic reciprocal theorem,'” equation (1} leads to the following boundary
integral equation:'*

cﬁa(é)uﬁ(éo T} = J {gﬁa(Xv éa T) * r,ﬂ(xa T} _f:ﬂa(X; és T) ¥ uﬂ(X$ T)] dS(X} (6)
s
where the generalized displacements and tractions are defined by
ug = {uy uy uy )" (7a)
tp={t: tz t3 g} (7b)

in which #; are tractions and g is the flux. Greek indices are used to denote generalized
co-ordinates varying from one to four in three dimensions. The tensor ¢;, depends upen the local
geometry at & and reduces to the delta function in generalized co-ordinates, dg,, for a point inside
the surface S. The asterisk ( %) denotes a Riemann convolution integral in time which implies, for
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instance,

Jpa*tig = J;) [ X, 8 — Thup( X, 7) ] dr = J;) [fpal X, Thup(X, 2 — 7)] dz (7c)

The kernel functions, gg, and fz,, are derived from the infinite space fundamental solutions for
instantaneous point force and source for three-dimensional poroelasticity,!! =13

The axisymmetric geometry is modelled using a cylindrical co-ordinate system (r, 8, z). The
generalized co-ordinates, u; and tp, are transfermed into this cylindrical system. Under purely
axisymmeltric conditions, the problem becomes independent of the circumferential degree of
freedom and uy = 0; 1, = 0. The kernel functions are then integrated from 0 to 2n in the
circumferential direction. It must be noted that while the steady-state kernels, Gg, and Fj,, can be
integrated analytically in terms of elliptic integrals, the transient components have to be handled
numerically. Thus, upon isolating the steady and non-steady parts of the kernels and subsequent
transformation and integration, the boundary integral equation {6) may be written as'?

%m@mﬂ=fmmmaMxﬂ—mwxmwnwc

2r
+ J j [Gm(X; &, 1) % E5(X, ) — fon(X; & 1)+ ilg( X, 1)1 dOdC (8}
cJo
where
ity = Tyatty = {0, w17 (9a}
Em = T:Bezrﬂ = {tr [ q}T (9b)

where Ty, is the transformation tenser and the kernel functions are suitably transformed into the
cylindrical system as described in Dargush and Banerjee.!* The various kernels are defined as

dpa = Gpa + g} (10a)
Joa = Fpa + 112 (10b)
Gy = ruGﬁa do (10c)
~ 02" —
Fyo= JO Fydf (10d)
where
Gpo = TypGsTiar(X) (11a)
Fpu = Ty FpsTaur(X) (11b)
it = Ty Toar (X) (11¢)
fie = Ty Toar (X) (11d)
Zpa = Trp¢,5Tia (11e)

with 7}, as the transformation matrix evaluated at X and 7, as the transformation evaluated at
¢ which reduces to an identity matrix, since the z-axes of the two systems coincide and 8 = 0 at &,
In equation (11}, r(X) is the radial co-ordinate of the point X.
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The components G, G,,, GZ,, Gzz, 14,,., F,z, F -and F_. of the steady-state kernels are identical
to the axisymmetric elasticity kernels.'® In addltlon, the components G,, and F,, are the
well-known axisymmetric potential flow kernels found in Banerjee and Butterfield.® The entire
steady-state boundary kernel is coupled for the poroelastic case and is provided by Dargush and
Banerjee'? in detail.

The strain at any interior point is now determined by using equation (8) in the strain —
displacement relations and setting &y, = &g,. Tt may be expressed as

gc,7) = j LGais( X: E)Ep(X. 1) — Fi(X; E)ity(X,1)1dC

j J [ Ge (X &0 % Fp(X, 1) — (X0 &, 1) % (X, 1) 1O AC (12)
where the interior strain kernels can be evaluated as
Ghij = $[Gpij + Gy (13a)
Fiy=450Fpu;+ Fjil (13b)
“Ghis = 304 + Gp5c (13¢)
“fiis = 30 faks + 5] (13d)

Using the elastic constitutive tensor in terms of cffective stresses in cylindrical form, the effective
stress at any peoint £ in the interior of surface § may be written as

(8,1 = j [Gﬁef(X; E)ip(X, 1) — iff’.‘j(X; Eiy(X, 1] dC
c

Zn
+ '[ f [Ygi (X &, 1) * (X, 1) — ”f,g'EJ,-(X; Et*ig(X,1)]d0dC (14)

Once again, the interior stress kernels Gku and Fku are identical to_those encountered in
steady-state axisymmetric elasticity. The remaining kernels such as G,,,J, F ;, ; as well as the entirc
transient kernels, "gy; and _f,gi ;» have been derived in the poroelastic context as a part of the
present development.

The steady-state coupled axisymmetric kernels, G;,’u and F ;fu, for interior stress are presented in
the Appendix. The transient kernels are explained in further detail later in the paper. Equations
(8), (12) and (14) are all exact statements without any approximations. In principle, if these
equations are written for every point on the boundary starting from time zero o the present time
and solved simultaneously, exact solutions to the desired boundary value problem can be
obtained. Tn reality, however, the analysis must be restricted to a finite number of equations at
some discrete time intervals. This is done by using discretization schemes as discussed in the next
section.

NUMERICAL TMPLEMENTATION

The application of the integral equations for boundary displacements and interior stresses to the
problems of practical engineering interest requires discretization in both time and space. Dargush
and Banerjee'® '* discuss the numerical implementation schemes for the axisymmetric analysis
from the viewpoint of boundary displacements. Consequently, the present discussion is confined
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to the extension of the different features of the numerical algorithm for the evaluation of stresses.
It may be noted that all past information is retained in the numerical discretization schemes and
no volume integration is required to be performed. This preserves the attractive boundary-only
feature of BEM.

For the temporal discretization, the time interval from zero to ¢ can be divided into N equal
increments of duration 4t. Thus, the convolution integrals in (14) with limits from zero to f can be
represented as a sum of N integrals using a piecewise constant time marching scheme. The
primary variables, i, and I, are assumed to remain constant within each time increment At. This
assumption is found to be sufficiently accurate and more computationally efficient than the use of
higher-order variation for time for diffusive system of equations. In comparison, higher-order
time variation is typically required for a hyperbolic system such as elastodynamics.'® These
variables can then be brought outside the integrals in (14) and the effective stress equation may be
written, [or the Nth time increment as

(f)—j [Gpu (X; E)E5 5(X)— ngj(x; &g (X)]dC

+ Z {f LRy (X OFX) — Fii 7" (X HHap(x)] dC} (15)
where the interior stress transient kernels are
2r
GE:‘;jN_n+1 =J G‘;;jN—n-v—l dG (16(1)
0
R 2n
F;g\'—;;-#l ZJ\ FE;N n+1 de (lﬁb)
0
with
Gl s =GR T T, (X)) (17a)
Fol =" (X, &) = Fi ™" Ty r(X) (17b)

The resulting transient stress kernels are provided in the appendix. Similar to the case of the
boundary equation,** the circumferential integration in (16) cannot be done in closed form and
requires the use of Gaussian quadrature formulae. Higher-order Gaussian rules and self-adaptive
integration®® are employed to conduct this circumferential integration.

The next step is the discretization of the curve C in the r—z plane to enable numerical
evaluation of the line integrals in equation (15). The discretization approach taken by Dargush
and Banerjee'* based upon the work of Henry et al.'® is utilized for the present implementation.
Three-noded quadratic surface elements are used with either linear or quadratic functional
variation. The strongly singular components of the static boundary kernels are evaluated using
the rigid body and the inflation mode techniques.'* ** Since the stress equation is written at the
interior point, the entire steady-state stress kernels, G,;,, and Pﬁu, are non-singular and well-
behaved. However, special care needs to be taken in the numerical evaluation of these kernels, if
the field point and the load point come in close proximity. The singularity in axisymmetric

kernels when the load point falls on the axis of symmetry (£, = 0) 1s cucumvented by simply
-.]— I g Ly P | L — R T vkt s, A

OOt
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Next, a spatially discretized form of the boundary integral equation is written for each
boundary node and the method of collocation is used to assemble a system of algebraic equations.
This system of equations is solved for the unknown generalized variables at a particular time step.
Further details of the assembly and solution process for the boundary equations are presented in
Reference 10. Upon solving the boundary equations for {#"} and {I"™}, the stress response at any
point in the interior of the body is computed by simple substitution into the collocated form of the
stress equation (15). The kernels exhibit strong singularities if £ is taken to the surface. The
boundary stresses are instead determined as a result of a limiting process involving the tangential
derivatives of the displacement and traction fields along with Hooke’s law. This technique is
detailed in Cruse and Vanburen®' and Rizzo and Shippy?? for clastostatics. In the poroelastic
case, the following relations may be used for boundary stress calculation:

(@EIE) = No(D)E, (18a)

@R = TR () — BT = — BoyNaO (18b)
x;  ONy x

ada£=ﬁz% (18¢)

where N, is the shape function employed, 7}, is the nodal traction, it is the nodal pore pressurc
and Djy, is the clastic constitutive tensor. The set of equations (18) can be solved for 633(&5) and
if ;(£) in terms of the known nodal quantities.

The poroelastic BEM formulation for the evaluation of stresses at any point in the soil mass
was implemented within a general-purposc computer code (GPBEST). The capability of this code
to analyse substructured problems offers additional advantages and permits the analysis of
bodies with multiple materials and intricate geometries. Some numerical applications of this
formulation are discussed in the following section.

NUMERICAL APPLICATIONS
Consolidation of a solid sphere

As a first example of poroelasticity using the axisymmetric BEM formulation, consider the
consolidation of a saturated solid sphere of soil subjected to hydrostatic pressure. Based upon the
theories of Terzaghi'® and subsequently Biot,!'?? the first quasistatic analytical solutions to this
problem were presented by Cryer.?* Closed-form solutions for the surface displacement and the
pore pressure change at the centre of the sphere were developed in the above reference and are
discussed below. In the previous work by Dargush and Banerjee,'* this problem was studied for
the evaluation of the displacement and pore pressure responses. In all cases, very good correlation
was obtained between Cryer's solutions and BEM results. In the present paper, this investigation
is extended to the computation of stresses in the soil. It is notable that Cryer’s formulations are
constructed in terms of non-dimensional quantitics. Hence, by definition,

T=ct/a®
Uy =u,/P
R=vrja
i
fo = = A= (19)

2u+ A’
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where « is the radius of the sphere, ¢, is the coefficient of consolidation, u, is the pore pressure, P is
the applied load intensity, ¢ is the time and r is the radial distance from the centre. Cryer®** has
presented solutions for the non-dimensional displacement of the surface at time T (i.e. Ug(1, T))
and the non-dimenstonal pore pressure at the centre of the sphere (.. U,(0, 1))

The displacement solutions may be generalized for any radius R as

Un(R.T) = R + i 8.3 — du,) [R\/;COS(R\/S_") - sin(Rﬂ}exp(— s,,T):, 20)
B n=1 R? Sal5, — 120, + 16y§}sin(R\/;,)

which reduces to Cryer’s expression for Ug(l, t) by setting R = 1. Next, the cffective radial stress
(ox) at any radius R may be derived as

P dl, Uy
w(R = | — 4 ) — 21
Tk(R,T) (3_4#6)[““2 4,uL)R] @
In particular, the effective radial stress at the centre of the sphere (i.e. R = 0) is given by
00, T) = PLI + 3 f_(uc,smT)s"}/;} (222)
n=1

where

T 8.”’(:(3 7 4Hc)eXP(*3nT)
fpes5,, T) = -
Su(Sy — 12, + 16u§)sm\/s_,,

Similar to the previous study, three different cases, corresponding to y. = 0,025 and 0-5 are
considered. However, g, = 0 implies incompressible behaviour leading to v = (-5. This then
requires special numerical treatment for axisymmetric analyses.?® Consequently, in the present
work, a numerical convergence study was conducted and a value of i, = 0-01 was found suitable
in approximating the condition g, = 0. The material constants for this problem corresponding
cach of the above cases are tabulated below:

(22b)

M v E

05 00 1-0
025 0-333 0-666
001 0-495 00299

The fluid properties, namely, the permeability, the density of the fluid and the undrained
Poisson’s ratio, are all selected as unity. The axisymmetric BEM mesh is shown in Figure 1,
consisting of four, three-noded elements. In addition, a few interior points are placed within the
sphere lo monitor the stresses and porc pressures in the interior, The size of the lime step is
selected as 0-00625 based on the diffusivity and the element length. The resuits obtained from the
present analysis using GPBEST are compared to the exact solutions discussed earhier. Figure
2 displays the BEM results for the variation of the radial displacement at the surface (R = 1) with
time for g, =0,0-25,0-50. This solution is identical to the one obtained by Dargush and
Banerjee'* and is presented here for the sake of completeness and better understanding of the
problem. Cryer’s solution for this case is also plotted. The agreement between the solutions is
excellent. In Figure 3, the relationship between the pore pressure at the centre of the sphere and
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Figure 1. Conselidation of a solid sphere — boundary element model
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Figure 2. Variation of radial displacement at surface of the sphere with time for g, = 00, 0-:25 and 05

the surface radial displacement for the values of p, is plotted in a manner similar to the results in
Cryer’s paper. Once again, very good correlation is obtained.

The focus is then shifted to the computation of the effective radial stress at the centre of the
sphere. The variations of the effective radial stress and the pore pressure are discussed together
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Figure 3. Relationship between pore pressure at the centre of the sphere and the radial displacement of the surface for
pe = 00, 025 and 0-5
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Figure 4. Variation of cffcctive radial stress with time for p, =00

showing the salient features of the consolidation phenomenon. Initially, the entire applied
hydrostatic pressure is absorbed by an increase in pore pressure. However, with time, the pore
pressure gradually diminishes while the effective stress simultaneously increases.

Ultimately, at very large times, the pore pressure is completely decayed while the cffective stress
becomes equal to the hydrostatic pressure on the sphere. For the incompressible case, ie.,
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#e = 00, the two stresses (u, and g,,} are complementary at all times, as seen in Figure 4, and the
total stress is always equal to the pressure applied. However, for cases with compressible soil
skeletons, the pore pressure initially rises before decaying to zero. This is evident from Figure
5 for pu, = 0-25 and Figure 6 for y. = 0-50. On the other hand, the effective stress invariably rises
from initial zero value to equal the applied pressure at steady state. The increase of pore pressure,
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Figure 5. Vanation of effective radial stress with time for g, = 0-25
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Figure 6. Variation of effective radial stress with time for pu, = 05
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also observed in Figure 3, is a peculiarity of Biot’s theory of consolidation of compressible soils
and was first noted by Cryer.2* Tt is clear from Figures 4—6 that the present BEM formulation
provides a good prediction of the exact solutions for the stress response in this quasistatic
poroelastic problem.

Stresses due to the wirhdrawal of pore fluid

The withdrawal of pore fluid from a soil leads to the subsidence of the ground surface. The
removal of pore fluid may be required for several purposes, namely, the pumping of water, oil or
natural gas, the lowering of the ground water table to allow excavations, or the reduction of
excessive pore water pressure in the ground. The problem of subsidence as a result of pumping of
water or some other fluid from the ground has been examined in detail by Small and Booker?®
and Booker and Carter,”* who have derived analytical or semi-analytical solutions for both the
steady state and the transient cases. Recently, Hsi et al.27 presented a finite element solution to the
problem of pumping-induced subsidence by also accounting for the effects of the drawdown of the
water table. In the present study, this problem is studied with particular emphasis on the build-up
of stresses around the sink as a result of the pumping process.

The removal of pore fluid leads to the reduction of pore pressures in the vicinity of the sink.
This in turn leads to an increase in the compressive effective stresses in the soil. The consolidation
caused by this reduction of pore pressure and increase in effective stress leads to subsidence of the
ground surface. Booker and Carter?? have analysed this problem in detail and present closed-
form solutions for the long-term subsidence and the pore pressure response at steady state. In
addition, these authors also present a transient solution to this problem considering the soil to be
isotropic and ¢lastic but with anisotropic flow properties.

For the present analysis, the soil is modelled as an isotropic, elastic medium with uniform,
isotropic permeabilities. In addition, the effect of the layered media with different permeabilities,
is also investigated. The problem is described in Figure 7 showing the point sink at a depth
h below the ground surface. Figure 8 depicts the two layered soil with the top and bottom layers
having the permeabilities k; and k,, respectively. In all cases, drainage is permitted through the
upper half-space surface.

The soil skeleton is assumed to have a Poisson’s ratio of (-25 to be conmsistent in all
comparisons. The axisymmetric boundary element model used for this study requires the
discretization of only the surfaces of the layers. The discretization is carried out to a distance of 41

HALF SPACE

TIRGTRN

(\ POINT SINK

Figure 7. Stresses due to withdrawal of pore fluid — single layer : problem description
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Figure 8. Stresses due to withdrawal of pore fluid — Two layers : problem description
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Figure 9. Stresses duc to withdrawal of pore fluid — boundary element model

for the transient consolidation analysis of the problem and to a distance of 20h for the
steady-state analysis. The mesh was truncated after these distances on the basis of convergence
studies with various meshes. More refinement in the model is provided to the half-space closer to
the sink and enclosing elements'® are used to model the infinite half-space. The two-layer
axisymmetric BEM mesh is shown in Figure 9. The point sink is modeiled as a sphere with small
but finite radius to allow the imposition of the boundary conditions for flux. The semi-circular
axisymmetric section representing the sphere is modelled using four elements.

The pore fluid involved in this pumping process may be compressible in nature. To account for
the compressibility of the fluid, a retative compressibility ratio, M /K, is defined, where M is the
bulk modulus of pore fluid after adjustment for porosity and K is the bulk modulus of the solid
skeleton. The two values of the M/K used in the present analysis are 10 and oo and the
corresponding values for the undrained Poisson’s ratio, v,, are found to be 0-3636 and (-5,
respectively.

Figure 10 shows the isochrones of excess pore pressure for two sets of non-dimensional times
¢, t/h?, where ¢, is the coefficient of consolidation of the soil and ¢ is the elapsed time after the start
of the pumping process. The negative values of p indicate suction. It was observed by Booker and
Carter® that if the pore pressure is normalized in the manner shown in Figure 10, then the
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Figure 10. Variation of excess pore pressure with depth

steady-state response (at ¢,t/h? = oo ) is independent of the relative compressibility. A closed-
form expression for the excess pore pressure distribution along the axis » = 0, for an isotropically
permeable soil (i.e. ky = k, = k) was presented by the above authors as follows:

(@
P="Namkiz+ 8 1z =H|

where Q is the total flux across the sink (i.e. 4nR?g), g is the flux per unit area, v is the unit weight
of the pore fluid and k is the permeability.

It can be observed from Figure 10 that the predicted results from the present BEM analysis are
in excellent agreement with the analytical results® for the steady state (c,t/h* = oo ). The
isochrones of pore pressure at an intermediate time (c,t/h* = 0-1) are also plotted. These are now
functions of the relative compressibility M /K and the two curves from the present BEM analysis
corresponding to the M /K value of 1-0 and oo are also shown in the figure. To avoid excessive
data presentation on a single figure, the results of Booker and Carter? for the transient case are
not shown. However, very good agreement was observed for all cases between the predicted and
analytical results. These results indicate that the excess pore pressure response is slower for
a more compressible fluid, which is consistent with the earlier observations by Booker and
Carter.?

The changes in effective stresses due to the pumping process are examined next. It must be
noted here that negative values of stress indicate compression. The variation of effective radial
stress change is piotted with depth in Figure 11 for two stages of the consolidation. The solid
curve displays the stress distribution at steady state while the dashed curves are plotted at
e t/h* =01 for M/K = 1-0 and oo . The effective radial stress is normalized in a manner similar
to the pore pressure (Figure 10). As evident from the curves, the change in radial stress is non-zero
at the surface of the soil and has a very high value close to the sink. In addition, the stress build-up
is slower for the more compressible case. Figure 12 depicts the variation of effective radial stress
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Figure 12, Variation of effective radial stress with radial distance in three different directions from the centre of the sink

change at steady state with outwardly radiating distance in three directions from the centre of the
sink. This illustrates the effect of the half-space where the horizontal variation (6 = n/2) is

significantly different

from the vertical (6 = 0, 7).

The effective axial stress variation with depth is shown in Figure 13 and the dependence of the
effective axial stress on the three directions, is shown in Figure 14. It is interesting to note that the
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Figure 14. Variation of effective axial stress with radial distance in three different directions from the centre of the sink

effective axial stress is initialiy tensile at short times before ultimately adopting a compressive
nature at steady state.

Lastly, for the case of two-layered soil, Figure 15 depicts the excess pore pressure isochrones at
steady state. The permeability of the top layer is k; and the bottom layer k,. Three cases are
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Figure 15. Excess pore pressure isochrones at steady state for three ratios of permeabilities in a two-layered soil

shown in the figure corresponding to three values of the ratio k, /k; as 0-1, 1-0 and 10-0. The first
curve (i.e. k;/k; = 0-1) shows a higher suction value in the top layer as compared to the
single-layer case because of its lower permeability. On the other hand, the third curve (ie.
ky/k; = 10-0) exhibits the opposite trend. However, the response at depths away from the
interface remains more or less unchanged.

CONCLUSIONS

A linear, axisymmetric time-domain BEM formulation for the evaluation of stresses in a soil mass
undergoing consolidation under quasistatic conditions, has been developed in this paper. The
present formulation is based on a previous work for displacement calculations and extends its
scope to handle stress computations. It still involves only surface variables through the use of
infinite space fundamental solutions. The spatial discretization only requires the modelling of the
generator of axisymmetric bodies. The stress integral equations are derived from the correspond-
ing boundary integral equations by differentiation. Starting with the three-dimensional boundary
integral formulation, a suitable transformation into a cylindrical co-ordinate system is conducted.
By considering purely axisymmetric loading and boundary conditions, the circumferential degree
of freedom is removed through integration and the corresponding axisymmetric stress integral
equations are developed.

The exact equations are discretized in time and space using suitable numerical schemes, This
allows for the analysis of a number of significant practical applications involving complex
geometries and time-dependent boundary conditions. Some such practical problems are studied
and very accurate solutions arc obtained.
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APPENDIX
Axisymmetric poroelastic steady-state interior stress kernels

This appendix provides the details of the generalized interior stress kernels for axisymmetric
steady-state poroelasticity. These kernels, when used in conjunction with the numerical tangential
integration of the transient part of the three-dimensional kernels in the next section, produce
a complete set for quasistatic axisymmetric analysis. The following generalized notation is
employed:

X =x;={R Z}" co-ordinates of integration point of ring source
E=¢={r z}7 co-ordinates of field point
n.(R,Z) normal in r direction at integration point

n.{R,Z) normal in z direction at integration point

The indices i,j assume the values 1 and 2 only or, equivalently r and z. The index p refers to the
pore pressure component in the third position of the generalized displacement or traction vector.
Thus, for example, u, is the pore pressure while ¢, represents the flux. The Greek indices «, # vary
from 1 to 3.

The steady-state interior stress axisymmetric kernels for poroelasticity arc presented below.
The elastostatic portion of these kernels is identical to the kernels described in Henry et al.'® and
is provided below for completencss. Thus, in the stress equation (12), the steady-state kernels
G7x and Fj are given by the relationships (i =r,z)

S aGAt'r (éir aéiz)
Gir =4 + ¢y T +

or oz
) aéiz . Gir aéaz
Gl = €4 oz +c2(r 8r>
Sa 861’2 aGlf
Girz ﬂ( 6]"' 62 )

and

0z
s c af:i: ¢ ﬁ‘ir ﬁ:z
== g r ar
“ﬂ, aﬁiz (3FA,,.
Fl'rz “‘( ar + az )
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where
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and similar expressions for 5!3”-/62, AF../or and 0F,;/éz. The constants ¢, and ¢, are given by
E(1 — v}
& =——————
(1 4+ v)(1—2v)
= Ev
2T +wd-2v)
and K (m}is the complete elliptic integral of the first kind and E (m}) is the complete elliptic integral

of the second kind.
The second-order partial derivative terms in the above equations may be expressed as

3Gy P4y 04y8K L 04y0K 2K
dRdr  ORér oR or  ar oR T TVaRer
3*By; d 8*E
+—tE+ B"a—E+%a—E~+B i=rz

ORr R or ' or oR ' Y oRer®

and similarly for §2G,;/8Réz, 82G,;/0Zor and 8*G,;/8Z3z. The derivatives of G,; and F; along
with terms involving A;;, B;;, K(m) and E(m) may be obtained easily and arc not detailed.
_ The expressions for the coupling terms of the steady-state kernels Gg;; and F pij are identical to
Uk and F{; above with the first subscript (i) replaced by the subscript (p) for pore pressure.
The corresponding derivatives, in an explicit form, are given by
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Three-dimensional transient interior stress kernels

This appendix contains the details of all the transient kernel functions utilized in the poroeiastic
boundary element formulation. These three-dimensional kernels are based upon continuous



BOUNDARY ELEMENT ANALYSIS OF $STRESSES IN AN AXISYMMETRIC SOIL 215

source and force fundamental solutions. The poroelastic theory is unconditionally fully coupled
and the entire coupled three-dimensional kernel must be considered, as shown below. The
foltowing relationships must be used to determine the proper form of the functions required in the
boundary clement discretization, that is,

GhaA X5 &) = gja(X; &mdT) forn=1

Gha(X; &) = g (X2 End7) — ga (X3 & (n — 1)41) forn>1,
Gl (X; &) = "ggu(X; & nd7) forn=1

Gpir(X; &) = "ghii (X; & nat) — Yggif(X; & (n — VA7) forn> 1,

with similar expressions holding for the remaining kernels. In the specification of these kernels
below, the arguments (X; £, t) are assumed.

The indices i,j, k,{ vary from 1 to 3, o, § vary from 1 to 4 and p equals 4.
Additionally, x; are the co-ordinates of integration point, ¢; are the co-ordinates of field point,

YVi= Xy — éi! rZ =¥y 1= r/(CvT)UZ and ¢ = (Vu - V)/(l - Vu)'

Boundary kernels. For the generalized transient displacement kernel,
1 1 Yi— V5
tro_ i i -
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o i
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. i
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P17 8p\ k(2 + 2p) + 2u)
o= (= ) gstm]
Gpr= dmr \x s\

whereas, for the generalized transient traction kernel,
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In the above,
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<S8
" NLS

100 = ci{h () — ha ()}

h2 2 —n2/a
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ﬁm=%_%%
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Jsln) = —hifm).

Interior effective stress kernels. The transient portion of the three-dimensional interior effective
stress kernels for soil consolidation are provided below:

uv . dgp gy | g
tr 0__ = 5” I _Jm —vat
i = 122, % 3¢, 28, " ez,

L v o (o
L Nl b S L} i
Jis =T % g, 4 3, e,
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and the prime, ', represents a derivative with respect to . Hence,

gi = Og1(m)
1 on
and so on.
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