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A time dependent boundary element method {BEM) for evaluating thermal siresses in an axisymmetric
thermoelastic body has been developed. Previous BEM work on axisymmetric thermoelasticity is extended to
permit the calculation of stresses at both boundary and interior points. However, the new formulation still requires
only surface discretization and is capable of very accurate evaluation of stress. The boundary displacement integral
equation is successively differentiated to obtain the corresponding stress and strain integral equations. Explicit
cxpressions for the steady-state axisymmetric fundamental solutions are derived in this process. The non-steady
components of the integrands are obtained directly from the corresponding three-dimensional counterparts. The
numerical implementation of this formulation is carried out within a general purpose BEM computer code and
several numerical examples are presented to illustrate the accuracy and applicability of the method.

1. Introduction

The boundary element method has been applied to the field of thermomechanics with considerable
success. The first formulations for uncoupled steady-state thermoelasticity were presented by Rizzo and
Shippy [1} in three dimensions and by Cruse et al. [2] in axisymmetry. In both these efforts, the
temperature gradients were treated in the manner of body forces and the resulting volume integral was
converted to surface integrals by utilizing the properties of an assumed steady-state temperature
distribution. Subsequently, an axisymmetric thermoelastic formulation with higher order elements was
presented by Bakr and Fenner [3]. Explicit fundamental solutions for the coupling terms were provided
in this work, which were later used by Bakr et al. [4] to solve a number of illustrative examples.

In the field of non-steady BEM for this class of problems, the first development may be attributed to
Banerjee and Butterfield [5] who proposed a volume-based procedure for dealing with the resulting
body forces, in the analogous field of soil consolidation. Recent advances in transient thermoelasticity
have been made by Masinda [6] in three dimensions and Tanaka et al. [7] and Sharp and Crouch [8] in
two dimensions. All of these efforts resort to a volume integration approach and are, thus, not true
BEM.

Recently, Dargush and Banerjee [9-11] have presented general, time-domain quasistatic BEM
formulations for two- and three-dimensional analyses, wherein only surface discretization is required.
Subsequently, a boundary-only axisymmetric formulation was developed by Dargush and Banerjee [12]
for quasistatic thermal analysis. This formulation, however, was restricted only to surface computations.
The present paper aims to extend this formulation to enable the computation of thermal stress at any
point on or within a thermoelastic body. It may be noted that the advantage of surface-only
discretization is preserved.

Starting in the next section with the governing differential equations for uncoupled quasistatic
thermoelasticity in three dimensions, the process of obtaining the integral formulations for pure
axisymmetry via suitable transformations is discussed in brief. As shown in the previous work, the
fundamental solutions are decomposed into the steady and transient components. This is followed by
progressive differentiation of the boundary displacement integral equation to obtain the integral
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3. Integral formulations for axisymmetry

In order to model an axisymmetric geometry, adopting a cylindrical coordinate system (7, 4, z)
becomes more convenient. In this system, the surface S is formed only by a generator C lying in the r—z
plane as shown in Fig. 1. The generalized coordinates, u, and ¢,, can now be transformed into the
cylindrical system. By considering only purely axisymmetric behavior, the circumferential degree of
freedom is eliminated and u, = 0, r, = 0. Next, the kernel functions are integrated from 0 to 2w in the
circumferential direction. The steady state kernels, G, and F,, can be integrated analytically in terms
of elliptic integrals while the transient components require numerical treatment. Thus, upon trans-
formation and integration, the boundary integral equation becomes [12]

Eul )8, (6.7) = [ 16,0 )7,0K,7) = Fanl(X; £)8,(X. 7)) dC

[T e 00 - Pt € 1 r a0 0 dC (6)
where )

";u = T,Buu,e = {ur e, T}t ] t_a = T,Batﬁ = {tr rz q}1 » (7a?b)

where T, is the transformation tensor and the kernel functions are suitably transformed into the
cylindrical system as described in [12]. By definition, the integrated steady state kernels are given by

G = fo " Gy, do, E,, = fo - F,, de (8a,b)
where

Goo=T,5G 3 Tou(X),  Fy, =T F,T,r(X), (9a,b)

oo = Tu8 s ToarX) s Jhu = Tof sToar(X) (9¢,d)

Coa = Twcys T s (9¢)

Fig. 1. Axisymmetric geometry.
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where the constants ¢, and ¢, are given by
__Ed-v» . Bv
ST aEN1-20) T AQ+n(d-2v)°

Explicit expressions for all the derivative terms in (13) and (14), and the steady-state axisymmetric
kernels for interior stress are presented in Appendix A. The transient kernels are detailed at a later
stage in the formulation. Equations (6), (10) and (12) are all exact statements with no approximations
made. Therefore, in principle, if equations (6} are written for every point on the boundary starting from
time zero to the present time and solved simultaneously, exact solutions to the desired boundary value
problem can be obtained. In reality, however, the analysis must be restricted to a finite number of
equations at some discrete time intervals. This is done by using discretization within a numerical
algorithm as discussed in the next section.

(15a,b)

4. Numerical implementation

The application of the integral equations for boundary displacements and interior stresses to
problems of practical engineering interest requires discretization in both time and space. Dargush and
Banerjee [12] provide an insight into the numerical implementation schemes for the axisymmetric
analysis from the viewpoint of boundary displacements. The present discussion is confined to the
different features of the numerical algorithm for the evaluation of stresses in the interior.

For the temporal discretization, the time interval from zero to ¢ can be divided into N equal
increments of duration Ar without any precision loss. Thus, the convolution integrals in (12) with limits
from zero to ¢ can be represented as a sum of N integrals. By assuming that the primary variables, i,
and f, remain constant within each time increment A¢, these variables can be brought outside the
integrals in (12) and the stress equation may be written, for the Nth time increment as

&zr(‘f) = J; [G;ij(X; f)fg(X) - F;ij(X; f)ﬁ,e (X)]dcC

* 2 {16z 0 oio0 - ke paoiac (16)
where the interior stress transient kernels are
G = [ Ggtan, B = [T B as, (17a,b)
with A
G e=[ | e e, (182)
Foi " THX; €)= J:_A:W TFaiX, 6 €, T)dr. (18b)

Alternatively, the axisymmetric stress kernels may be obtained directly from the three-dimensional
kernels by suitable transformation as foltows:

Gg;}.”"*nﬂ(X; &)= G:f:,-N_nHT,.,e"(X) ’ (192)
FoiN= (X, &)= F3V "' T ar(X) . (19b)

The time integration of the three-dimensional kernels is performed analytically and the resulting
transient stress kernels are provided in Appendix A. However, similar to the case of the boundary
equation [12], the circumferential integration in (17) cannot be done in closed form and requires the use
of Gaussian quadrature formulae. Self-adaptive integration, with subsegmentation and higher order
Gaussian rules, is employed in this circumferential integration scheme.

Having discussed a piecewise constant time marching scheme to discretize the time interval for the
solution, the next step is the discretization of the director € in the r-z plane to enable numerical



M.B. Chopra, G.F. Dargush. Thermal stress analysis of axisymmelric bodies 59

state whereas the outer face is held at zero. The following material properties are selected to represent
the cylinder:

E=1.0, v=03, a=1.0, k=10.

The axisymmetric BEM mesh for this problem is shown in Fig. 2. It consists of ten quadratic boundary
elements containing twenty-one nodes. This discretization was found to be sufficient to yicld very
accurate results. Conditions of symmetry are imposed at Z =0 and no elements are required at that
surface. However, a number of interior (sampling) points are placed on the plane of symmetry, as
shown in Fig. 2, to evaluate the interior quantities such as temperature and stress. These quantities are
then used for comparison with an analytical solution to this problem to establish the validity of the
analysis.

The analytical solution is presented by Timoshenko and Goodier {18] for the temperature distribution
as well as the thermal stresses at steady state. If @ is the inner radius, b the outer radius and T, is the
temperature of the inner surface, with the outer held at zero, then the radial variation of temperature is
given by

; b
i
T0) = Togbra) 8 7 »

and the stresses are given by

— aETf [ 1 _ll .—a2 (1 _ _tﬁ) 1 2]
T S0 -wylogla) L 87 T bt - a? 2/ 108,
aET, b

; a2 2 :|

T = 31— ») log (b/a) [1 ~log =i (1 + ?) log 7 |
_ «ET, [1 g b2 _]

T = 31— ) loglla) L' TS T pr— ) Bal”

2

Results obtained from the present formulation using GPBEST are compared with the analytical
solutions in Fig. 3. The temperature variation (Fig. 3(a)) and the stress variation (Fig. 3(b)) are plotted
with respect to the radial distance from the center of the cylinder. As evident, excellent correlation is
obtained for all four quantities.

-] o ® Corner node
© Mignade
& g X Interior paoint

Fip 2. Cylinder with a circular concentric hele, boundary element model.
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5.2. Sudden cooling of a solid cylinder

This example analyzes the response of a long, solid cylinder of radius b with a constant uniform
initial temperature of 100°C whose lateral surface is maintained suddenly at 0°C temperature. The
analytical solution, presented in [18], for the temperature at any given instant ¢, is given by

= TO z ARJO (Bn L) e_PnI b
n=1 b
where J,(B,(r/b)) is the Bessel function of order zero and 8, are the roots of the equation J(8)=0.

In addition, the coefficients of the series, A, are

_ 2
" anJl(Bn) ’

and the constants p, are

_(k)ﬁ_i
Pr=\pe,) b2

J,(B,) is the Bessel function of order one and the other symbols have their usual meaning.
The stresses at any instant ¢ and a radius r are given by

A

2aET, & 1 b J(B,r!b)
- L L bJ(Brib)

” (1—V)Z [,si gir Ji(BY) }
20ET, & { 1 b J(B,rib) J(,(Bnr/b)]
2 5 — -

Top = (1-v) = Bi r J(B) B,J,(B,)
2aET0 Z W2 Jo(B,rib)
U Bi anl(ﬁn) )

The following material properties are assumed:

E=10, v=03, a=10, k=10, p=10, c,=1.0.

13

With the above choice of properties, the diffusivity ¢ becomes one. The BEM mesh used for this
problem is shown in Fig. 4. Tt consists of six three-noded boundary elements used to model the cylinder.

@ Carner node
© Midnode
X Interior point

i

Fig. 4. Cylinder cooled from initial temperature, boundary element model.
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Fig. 5. (a) Temperature variation along the radius of the cylinder at ct/b*=0.05, 0.1, 0.2 and 0.5, (b) Normalized radial stress
variation with radial distance for ct/b* =0.1, 0.2 and 0.5,



M.B. Chopra, G.F. Dargush, Thermal siress analysis of axisymmetric bodies 65
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Fig. 7. Heat flow from buried radioactive waste, boundary element model.
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Fig. 8. Temperature increases as a function of distance from the borehole wall for r = 2, 22 and 222 years.

initial placement. The agreement between the present BEM results and the FEM results is very good
for ali time values. It may be noted here that the results obtained by Dargush and Banerjee [12] for this
problem do not differ from the present BEM results and are, therefore, not displayed. However, the
present solution is much more efficient.

Next, in Fig. 9, the results of the radial stress increase in the rock mass due to the waste around the
borehole at r=2, 22 and 222 years are shown. The stress profile exhibits some differences from the
FEM analysis. However, the overall correlation is quite satisfactory in view of the numerical nature of
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close to the borehole. However, at larger radii away from the wall, the stress change becomes tensile in
the circumferential direction. Eventually, all stress changes are only very small as scen by the curve for
T =222 years. As noted earlier by Dargush and Banerjee [12], the FEM results are shown to be
independent of the bore hole radius a, which is not strictly true. Very different responses are obtained
for different borehole radii.

6. Conclusions

A linear, axisymmetric time-domain BEM formulation for the evaluation of thermal stresses has
been developed in this paper. The present formulation involves only surface variables through the use
of infinite space fundamental solutions. Thus, the spatial discretization only requires the modeling of
the generator of axisymmetric bodies. The stress integral equations are derived from the corresponding
boundary integral equations by differentiation. Starting with the three-dimensional boundary integral
formulation, a suitable transformation into a cylindricai coordinate system is conducted. By considering
purely axisymmetric loading and boundary conditions, the circumferential degree-of-freedom is
removed through integration and the corresponding  axisymmetric stress integral equations are
developed.

The exact equations are then discretized in time and space using an advanced numerical implementa-
tion within a general purpose environment. This allows for the analysis of a number of significant
practical applications involving complex geometries and time-dependent boundary conditions. Several
such practical problems are studied and very accurate solutions are obtained even for problems with
very severe thermal gradients. This provides the basis for establishing the accuracy and effectiveness of
the present implementation as a practical analysis tool.
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Appendix A

A.1. Axisymmetric thermoelastic steady-state interior stress kernels

This appendix provides the details of the generalized interior stress kernels for axisymmetric
steady-state thermoelasticity. These kernels, when used in conjunction with the numerical tangential
integration of the transient part of the three-dimensional kernels in the next section, produce a
complete set for quasistatic axisymmetric analysis. The following generalized notation is employed:

X=x,={R Z}' coordinates of the integration point or ring source ,
§=&={r z}' coordinates of the ficld point ,
n(R,Z) normal in the r direction at the integration point ,

nR, Z) normal in the z direction at the integration point .

The indices {, j assume the values 1 and 2 only or, equivalently, r and z. The index 7 refers to a thermal
component in the third position of the generalized displacement or traction vector. Thus, for example,
ur is the temperature while ¢, represents the flux. The Greek indices a, B vary from 1 to 3.
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The derivatives in the above equations are, in an explicit form,

G, M N 277
or _'—rz a,K(m) + rsz2+Hp2 a,E(m) ,
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"(m) = dg,(n)

g(l m)= an

and so on.

In the above,
o T
n*(cr)“z’ C_PCE ’ er (z)_\/‘?l' 0 € ’
n N g4 7\ | 2h,(n)
hy(m) = erf(j) —v=e L gm= -erf(g) + ?
n 6k, ()

gs(m) = —erfl fe(m) = —ertf (g') + —j——

3).
pm ==t (3)+ 25 =m0,
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