
 

CHAPTER 9 
 

A FIRST-PRINCIPLE, PHYSICS-BASED WATERSHED MODEL: WASH123D 
 

GOUR- TSYH YEH1, GUOBIAO HUANG2, HWAI-PING CHENG3, FAN ZHANG1, HSIN-CHI 
LIN3, EARL EDRIS3, AND DAVID RICHARDS3

 
The approaches to watershed-scale modeling can be classified into three broad 

groups: parametric methods, stochastic approaches, and physics-based mathematical 
models.  In the past 30 years, the watershed modeling communities have employed 
parametric-based models (the most famous one is the HSPF [1]; all other parametric 
models are similar to HSPF, e.g., SWMM [2], CREAMS [3], STORM [4], ANSWERS 
[5], SWRRBWQ [6]) for watershed management and assessment including ecological 
exposure assessments and TMDL calculations.  Evolved from the pioneer model 
STANFORD WATERSHED IV [7], HSPF has dominated watershed simulations for 
more than 20 years.  Physics-based, process-level chemical transport and hydrological 
models have been practically nonexistent until recently.  It is easy to understand that only 
the physics-based, process-level fluid flow and thermal, salinity, sediment, and 
biogeochemical transport models have the potential to further the understanding of the 
fundamental biological, chemical and physical factors that take place in nature.  It is 
precise for this reason that EPA ecological research strategies [8] had clearly stated that 
the first-principle, physics-based models should be used in ecological system assessment 
on a watershed scale. 

Progresses in the development of first-principle, physics-based models for individual 
processes of infiltration, evapotranspiration, recharge, moisture redistribution in vadose 
zone, groundwater flow, surface runoff, and river flow have been remarkable.  These 
individual processes must be dynamically coupled over various spatial and temporal 
scales.  In the past, each individual process was often investigated assuming other 
coupling and influencing processes were a priori.  For example, to model overland flow 
(surface runoff), it was often implicitly assumed that the infiltration was known and the 
feedback from groundwater flow and river flow were not explicitly enforced.  Integrated 
approaches to modeling coupled processes have gained momentum recently.  Many 
integrated models have achieved the coupling via external or internal linkage of 
individual process level models.  As a result, these models often have to introduce undue 
empiricism. 

This chapter specifically focuses on a first-principle, physics-based model, 
WASH123D [9].  The development of an integrated numerical model of the 
aforementioned processes is presented.  A rigorous coupling of these hydrological and 
biogeochemical processes is achieved by imposing the continuity of fluxes and state 
variables.  In this integrated model, any process between two media is the natural 
consequence of interaction and feedback between processes occurring in individual 
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media.  For example, infiltration and recharge are spatially and temporally varied and are 
the consequence of interacting flow processes on the land surface (overland) and in the 
subsurface media and rivers.  The theoretical bases are heuristically derived.  Numerical 
implementations of the theoretical coupling are conceptually and briefly discussed.  
Particular features of WASH123D in the treatment of interactions among media 
interfaces, the inclusion of various types of control structures and pumps, the formulation 
of reaction-based water quality simulations, and the implementation of optional 
hydrodynamics in river network and overland regime are addressed.  The design 
capability and demonstrative examples ranging from minutes to years in temporal scale 
and from meters to tens of kilometers in spatial scales are presented.  The potential 
applications of the model to watershed modeling for various temporal and spatial scales 
are emphasized. 
 

I.  INTRODUCTION 
 

This chapter presents the development of a first-principle, physics-based watershed 
model.  A watershed includes an overland regime including management structures such 
as storage ponds, pumping stations, culverts, and levees; a river/stream/canal network 
including natural junctions and control structures such as weirs, gates, culverts, and 
pumping; and subsurface media including management devices such as pumping and 
injecting wells, drainage pipes, and drainage channels. The model is composed of 
hydrologic and hydraulic flow, thermal and salinity transport, and reactive water quality 
transport. 

Three options are included in modeling flow on the land surface and in 
river/stream/canal networks: kinematic-wave, diffusion-wave, and dynamic-wave 
approaches.  Flow through subsurface media is described by the Richards equation where 
vadose and saturated zones are considered a unified media system. 

Transport equations based on the principle of energy and mass balance are used to 
describe temporal-spatial distributions of temperature, salinity, suspended and bed 
sediments, and water qualities.  A generic paradigm using reaction-based approaches is 
employed to model biogeochemical processes. In this paradigm, the system is completely 
defined with a reaction network.  The reaction network is diagonalized with the Gauss-
Jordan decomposition so that a linearly independent reaction is measured by a kinetic 
variable. 

For surface water flow simulations, the numerical method that is most appropriate 
for a particular approach is used.  In kinematic-wave approaches, the semi-Lagrangian 
method (backward particle tracking) is used to numerically approximate the kinematic- 
wave equation.  In the diffusive wave approach, either the Galerkin finite element method 
or the semi-Lagrangian method is employed to numerically solve the diffusion equation 
governing the transport of water surface elevation.  In the fully dynamic-wave approach, 
the primitive continuity and momentum equations are transformed into characteristic 
wave equations and the hybrid Lagrangin-Eulerian finite element method is applied to 
approximate these equations in a finite element discretization.  Thus, first water depth 
and velocity are computed with the backward method of characteristics.  Then the 
Galerkin finite element method is applied to the Lagrangian form of eddy-diffusion 
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equation.  For subsurface flow simulations, the Galerkin finite element method is used to 
discretize the Richards equation. The Picard method is applied to deal with the 
nonlinearity of flow equations. 

For transport simulations (including thermal, salinity, sediment, and water quality), 
two options are provided to discretize the governing sediment and biogeochemical 
transport equations: hybrid Lagrangian-Eulerian finite element methods or conventional 
finite element methods.  The fully implicit sequential iteration approach, the operator 
splitting method, and the mixed predictor-corrector and operator-splitting scheme are 
employed to handle the coupling between the hydrologic transport and biogeochemical 
reactions.  The Newton-Raphson method is used to solve the set of algebraic equations 
and ordinary differential equations describing the evolution of all biogeochemical 
species. 

Several example problems are presented to demonstrate the design capability of the 
model.  These problems have varied spatial-temporal scales, ranging from minutes to 
years and from meters to tens of kilometers.   
 

II. MATHEMATICAL BASIS 
 

In this section, we give governing equations, initial conditions, and boundary 
conditions for simulating density-dependent flow and sediment transport and reactive 
biogeochemical transport in watershed systems. 

 
A.  One-Dimensional River/Stream/Canal Networks. 
 

The governing equations to simulate density-dependent flow in a river/stream/canal 
network include one-dimensional St Venant equations and thermal and salinity transport 
equations.  These equations can be derived based on the conservation law of water mass, 
linear momentum, energy, and material mass [10], as described below. 

St Venant Equations.  The St Venant equations for one-dimensional flows in a 
river/stream/canal network include one continuity equation and one momentum equation.  
The continuity equation is derived based on the conservation of water mass, 

1 2a r e g oA Q S S S S S S
t x

∂ ∂
+ = + − − + +

∂ ∂
o  (9.1) 

where t is the time [t]; x is the axis along the river/stream/canal direction [L]; A is the 
cross-sectional area [L2]; Q is the flow rate [L3/t]; Sa is the man-induced artificial source 
[L3/t/L]; Sr is the source due to rainfall [L3/t/L]; Se is the sink due to evapotranspiration 
[L3/t/L]; Sg is the sink due to groundwater infiltration [L3/t/L]; So1 and So2 are the source 
terms contributed from overland flow from bank side 1 and 2, respectively [L3/t/L]. 

The momentum equation is derived based on the conservation of linear momentum, 
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where V is the velocity [L/t]; g is the gravity constant [L/t2]; Zo is the bottom elevation 
[L]; h is the water depth [L]; ∆ρ = ρ - ρo is the density deviation from the reference 
density (ρo), which is a function of temperature and salinity as well as other chemical 
concentrations; c is the shape factor of the cross-sectional area; F is the momentum flux 
due to eddy viscosity [L4/t2]; Ma is the external momentum-impulse from artificial 
sources/sinks [L4/t2/L]; Mr is the momentum-impulse gained from rainfall [L4/t2/L]; Me is 
the momentum-impulse lost to evapotranspiration [L4/t2/L]; Mg is the momentum-impulse 
lost to the groundwater due to infiltration [L4/t2/L]; Mo1 and Mo2 are the momentum-
impulse gained from the overland flow [L4/t2/L] through river banks 1 and 2; ρ is water 
density [M/L3]; B is the top width of the cross-sectional area [L]; τs is surface shear stress 
[M/t2/L]; P is the wetted perimeter [L]; and τb is bottom shear stress [M/t2/L], which can 
be assumed proportional to the flow rate as τb/ρ = κV2 where κ = gn2/R1/3 and R is the 
hydraulic radius (L) and n is the Manning’s roughness coefficient. 
 
1.  Fully Dynamic Wave Approaches 
 

Equations (9.1) and (9.2) written in conservative form are the governing equations 
for one-dimensional flow in river/stream/canals.  Depending on the simplification of the 
momentum equation, one can have three approaches: fully dynamic wave, diffusive 
wave, and kinematic wave.  For the fully dynamic wave approach, all terms in Eq. (9.2) 
are retained.  Under such circumstances, the conservative form of the governing 
equations may be used or they may be cast in the advection form or in the characteristic 
form.   In this chapter the characteristic form of the fully dynamic approach will be used 
because it is the most natural way and amenable to the advective numerical methods, e.g., 
the upstream approximation or the Lagrangian-Eulerian method.  The characteristic form 
of the St Venant equations can be written as [9] 
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where A# is a function of the water depth h(x,t) and the axis along the river/stream/canal 
direction x.  Equation (9.3) simply states that the positive gravity wave (V + ω) is 
advected by the speed (V + c) while Equation (9.4) states that the negative gravity wave 
(V - ω) is advected by the speed (V - c). 

The system of Eq. (9.3) and (9.4) is identical to the system of Eq. (9.1) and (9.2) on 
the differential level.  They offer advantages in their amenability to innovative advective 
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numerical methods such as the upstream finite difference, upwind finite element, or semi-
Lagrangian scheme.  Furthermore, the implementation of boundary conditions is very 
straightforward.  Only when the wave is coming into the region of interest, the boundary 
condition is required.  For the wave that is going out of the region of interest, there is no 
need to specify a boundary condition. 

For transient simulations, water depth (or water stage) and the cross-sectionally 
averaged velocity must be given as initial condition.  In addition, appropriate boundary 
conditions need to be specified to match the corresponding physical system.  A total of 
six types of boundary conditions can be specified.  They correspond to (1) open upstream 
boundary, (2) open downstream boundary, (3) closed upstream boundary, (4) closed 
downstream boundary, (5) internal boundaries at all junctions, and (6) internal boundaries 
at all control structures.   The setup of governing equations for all global boundaries and 
internal boundaries can be found elsewhere [9]. 
  
2. Diffusive Wave Approaches 
 

In a diffusive wave approach, the inertia terms in the momentum equation is 
assumed negligible when compared with the other terms.  By further assuming negligible 
eddy viscosity and Ma = Mr = Me = Mg = Mo1 = Mo2 = 0, we approximate the 
river/stream/canal velocity with the following equation [11], 
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(9.8) 

where n is the Manning’s roughness coefficient [t/L1/3], a is a unit-dependent factor (a = 1 
for SI units and a = 1.49 for U.S. Customary units) to make the Manning’s roughness 
coefficient unit-independent, R is hydraulic radius [L], and H = h + Zo is the water surface 
elevation.  Using the definition Q = VA and substituting Eq. (9.8) into Eq. (9.1), we 
obtain 
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(9.10) 

To achieve transient simulations, either water depth or stage must be given as the 
initial condition. In addition, appropriate boundary conditions need to be specified to 
match the corresponding physical system.  Five types of boundary conditions may be 
specified depending on physical configurations of the boundary.  These boundary 
conditions are addressed below. 

The first type of boundary conditions is the Dirichlet boundary condition.  On a 
Dirichlet boundary, either the water depth or stage can be prescribed as a function of 
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time.  The second type is the flux boundary condition.  On a flux boundary, a time-
dependent flow rate is prescribed as a function of time.  The third type is the water-depth 
dependent condition, where a prescribed rating curve must be given.  This condition is 
often used to describe the flow rate at a downstream river/stream/canal boundary at 
which the flow rate is a function of water depth [9].  

 The fourth type of boundary condition is internal 
boundaries at junctions.  This condition is applied to a 
boundary of a river/stream/canal reach that is connected to 
a junction (Fig. 9.1).  For the junction complex consisting 
of NJ river/stream/canal reaches (e.g., in Fig. 9.1, NJ = 3) 
and one junction (say J), we have (NJ + 1) unknowns, 
which are flow rates, QIJ (QIJ is the flow rate from the I-th 
reach to junction J), and water stage at junction J, HJ.   
Therefore, we need to set up (NJ + 1) equations.   The first equation is obtained by 
applying the continuity of mass at the junction to result in 

J

1J 2J

3J

Fig. 9.1.  A River Junction
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 for the case when the storage effect of the junction must be accounted for or  
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when this effect is negligible.  The other NJ equations can be obtained by assuming that 
the kinetic energy in the junction is negligible to result in 
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where HIJ is the water stage at the internal boundary node IJ of the I-th reach connecting 
to junction J.  Equations (9.11) or (9.12) along with Eq. (9.13) provide (NJ + 1) equations 
to solve for (NJ + 1) unknowns. 

The fifth type of boundary conditions is 
the internal boundaries adjacent to structures 
(weir, gate, culvert, etc.).  For any structure 
(S), there are two river/stream/canal reaches 
connecting to it.  The node 1S located just 
upstream of the structure is termed the 
controlled-internal boundary of the upstream reach while the node 2S located just 
downstream of the structure is called the controlled-internal boundary of the downstream 
reach (Fig. 9.2). Specification of boundary conditions for the internal boundaries for the 
diffusive wave approach is given as 

S

1S 2S
Reach 1 Reach 2

Fig. 9.2  A Ccontrol Structure
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(9.14) 

where QS is the discharge over the structure, which is a given function of water depths hup 
at Node 1S and hdn at Node 2S.  The flow configuration around a structure and its 
surrounding reaches may be very dynamic under transient flows.  Both of the water 
stages at nodes 1S and 2S may be below the structure; both may be above the structure; or 
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one below the structure while the other is above the structure.  When both stages are 
below the height of the structure, the two reaches connecting the structure are decoupled.  
When at least one of the stages is above the structure, two reaches are coupled via the 
structure discharge.  The structure discharge, QS, can be obtained by solving the 
continuity and Bernoulli equation between Nodes 1S and 2S.  The discharge formulae for 
a variety of structures under various stage conditions were given elsewhere [9]. 
 
3. Kinematic Wave Approaches 
 

In a kinematic approach, all the assumptions for the diffusive approach hold.  
However, the velocity is given by a modified Eq. (9.8) with ∂Zo/∂x replacing ∂H/∂x.  
Substituting the modified velocity equation into Eq. (9.1) and using the definition Q = 
VA, we obtain 

1 2a r e g o oA VA S S S S S S
t x

∂ ∂
+ = + − − + +

∂ ∂
 (9.15) 

It is noted that Eq. (9.15) represents the advective transport of the cross-sectional area, A 
[L2].  It is a linear advective transport equation, an ideal equation amenable for 
numerically innovative advective transport algorithm.  To achieve transient simulations, 
either water depth or stage must be given as the initial condition. In addition, appropriate 
boundary conditions need to be specified to match the corresponding physical 
configuration.  In a kinematic wave approach, boundary conditions are required only at 
upstream boundaries.  An upstream boundary point can be an open boundary or a closed 
boundary.  On an open upstream boundary, either the cross-sectional area (equivalent to 
water depth or water stage) or the flow rate can be specified.  The flow rate through a 
closed upstream boundary point is by default equal to zero. 
 
4. Thermal Transport Equation 
 
The thermal transport equation is derived based on the conservation principle of energy:   

( ) ( )

1 2

h a r n
h h h

e s g o o c
h h h h h h

CAT CQT T b
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t x x x
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− − + + + +

ρ ρ
S−  (9.16) 

where ρ is the water density [M/L3]; C is the heat capacity of water [L2/t2/T]; T is the 
temperature [T]; Dh is the apparent thermal conductivity including the effect of 
dispersion, diffusion, and conduction [E/L/t/T = ML/t3/T, where E is the unit of energy]; 
Sh

a is the heat source due to artificial injection/withdraw [E/t/L=ML2/t3/L]; Sh
r is the heat 

source due to rainfall [E/t/L=ML2/t3/L]; Sh
n is the heat source due to net radiation 

[E/t/L=ML2/t3/L]; Sh
b is the heat sink due to back radiation from water surface to the 

atmosphere [E/t/L=ML2/t3/L]; Sh
e is the heat sink due to evaporation [E/t/L=ML2/t3/L]; 

Sh
s is the heat sink due to sensible heat flux [E/t/L=ML2/t3/L]; Sh

g is the heat source due 
to exfiltration from subsurface [E/t/L=ML2/t3/L]; Sh

o1 is the heat source from overland 
flow via bank 1 [E/t/L=ML2/t3/L]; Sh

o2 is the heat source from overland flow via bank 2 
[E/t/L=ML2/t3/L]; and Sh

c is the heat source due to chemical reaction [E/t/L=ML2/t3/L]. 
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To describe thermal transport, in addition to the initial conditions, boundary 
conditions must be specified for the temperature.  Four types of global boundary 
conditions are provided here.  The first type is the Dirichlet boundary condition where the 
temperature is prescribed as a function of time.  The second type is the variable boundary 
condition where the temperature gradient is zero if the flow is directed out of the system.  
If the flow is directed into the system, the energy-flow rate is given by the product of the 
time-dependent incoming-fluid specific energy and the water-flow rate. The third type is 
the Cauchy boundary condition where the energy-flow rate is prescribed as a function of 
time.  The fourth type is the Neumann boundary condition where the energy-flow rate 
due to the temperature gradient is prescribed as a function of time. 

Two internal boundary conditions must be specified:  one for the junction and the 
other for control structures.  At any junction, the principle of energy balance and the 
formulation of energy fluxes from joining reaches to the junction are used to yield the 
governing boundary equations.  At any control structure, the continuity of energy fluxes 
and the formulation of energy fluxes across the structure form the basis to yield the 
boundary equation [9]. 
 
5. Salinity Transport Equation 
 

The salinity transport equation is derived based on the conservation principle of salt:   

  ( ) ( ) 2s a r g ol o
s s s s

AS QS SD A M M M M M
t x x x

∂ ∂ ∂ ∂⎛ ⎞+ − = + + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
s

 (9.17) 

where S is the salinity [M/L3]; Ds is the longitudinal dispersion coefficient for salinity 
[L2/t]; Ms

a is the artificial source of the salt [M/t/L]; Ms
r is the salt source from rainfall 

[M/t/L]; Ms
g is the salt source from subsurface [M/t/L]; Ms

o1 is the salt source from 
overland via river bank 1 [M/t/L]; and Ms

o2 is the salt source from overland source via 
river bank 2 [M/t/L].  Four types of global boundary conditions and two types of internal 
boundary conditions are similar to those for thermal transport with “salt-flow rates” 
replacing “energy-flow rates” and salinity replacing “temperature.” 
 
6. Sediment Transport Equation 
 

 Both bed and suspend sediment transport processes are considered in WASH123D.  
The governing equations for bed sediment are derived based on the mass balance of 
sediments on river beds while those for suspend sediments are obtained based on the 
conservation principle of sediments as 

    ( ) ( )n
n n

PM
P D R

t
∂

= −
∂

 (9.18) 
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t x x x
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2o

n
 (9.19) 

where P is the river/stream/canal cross-sectional wetted perimeter [L], Mn is wetted 
perimeter-averaged concentration of the n-th bed sediment in mass per unit bed area 
[M/L2], Dn is the deposition rate of the n-th sediment in mass per unit bed area per unit 
time [M/L2/T], Rn is the erosion rate of the n-th sediment in mass per unit bed area per 
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unit time [M/L2/T], Sn is the cross-sectionally-averaged concentration of the n-th suspend 
sediment in the unit of mass per unit media volume [M/L3], Dn is the longitudinal 
dispersion coefficient [L2/T] for the n-th fraction of suspend sediment, Mn

a is the artificial 
source of the n-th suspend sediment [M/t/L], and Mn

o1 and Mn
o2 are overland sources of 

the n-th suspend sediment from river banks 1 and 2, respectively [M/t/L].  To complete 
the mathematical description of sediment transport, initial conditions for every bed 
sediment fractions must be given and both initial and boundary conditions for every 
suspend sediment fractions must be prescribed.  The initial conditions can either be 
obtained from the simulation of steady-state version of Eq. (9.18) and Eq. (9.19) or from 
field measurements.   The same four types of global boundary conditions and two types 
of internal boundary conditions described for salinity transport are included for each 
suspend sediment fraction. 
 
7. Biogeochemical Transport Equation 
 

From a mathematical point of view, the temporal-spatial distribution of the M 
biogeochemical species in a river/stream/canal system is described with a set of reactive 
transport equations as 

1 2( )

where  ( )

a r g o oi i
i i i i i i i i i N

ci i i i
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L C M M M M M Ar

t
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∂
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ρ

α ρ

ρ ρ
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Where ρi is the density of the phase associated with species i [M/L3]; Ci is the 
concentration of the i-th species in mass per unit phased mass [M/M]; t is the time [t]; αi 
is 0 for immobile species and 1 for mobile species; L is the advection-
dispersion/diffusion transport operator; Mi

a,  Mi
r, Mi

g, Mi
o1, Mi

o2 are the source of the i-th 
species due to artificial injection, rainfall, groundwater, over land input through river 
banks 1 and 2 in mass rate per unit x-length [M/t/L]; ri|N is the production rate of the i-th 
species due to N biogeochemical reactions in mass rate per unit medium volume [M/t/L3]; 
V is the velocity [L/t]; and DC is the hydrodynamic dispersion coefficient for chemical 
species [L2/t].  The determination of ri|N is a primary challenge in water quality modeling.  
Instead of using an ad hoc method to formulate ri|N, we use reaction-based formulations.  
In a reaction-based formulation, ri|N is given by the summation of rates of all reactions in 
which the i-th species participates, 

( ) ,   i i
i N reaction ik ik k

k N

d C
r R

dt ∈

= = −∑ρ
ν µ i M∈  (9.21) 

where νik is the reaction stoichiometry of the i-th species in the k-th reaction associated 
with the products, µik is the reaction stoichiometry of the i-th species in the k-th reaction 
associated with the reactants, and Rk is the rate of the k-th reaction.  Substituting Eq. 
(9.21) into Eq. (9.20) results in transport equations of M species as 
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( )1 2

( )

,  

i i
i i i

a r g o o
i i i i i ik ik k

k N

A C
L C

t

M M M M M A R i M
∈

∂
+ =

∂

+ + + + + − ∈∑

ρ
α ρ

ν µ
 (9.22) 

Equation (9.21) governs the dynamics of immobile species while Equation (9.22) 
governs the transport of mobile species subject to biogeochemical reaction processes.  
Either a primitive approach or a diagonalization approach can be employed to integrate 
Eq. (9.22) to give spatial-temporal distributions.  In a primitive approach, after reaction 
networks are hypothesized and their reaction rates are formulated, they are substituted 
into Eq. (9.22) to form a set of transport equations, which are then integrated to yield the 
distributions and evolutions of water quality in a region of interest.  When some of the 
reaction rates are infinite, i.e., some fast equilibrium reactions taking place in the system, 
this approach is not adequate [12].  Here, we will take a diagonalization approach, in 
which Eq. (9.22) is reduced to three subsets of equations with the Gauss-Jordan 
decomposition of the reaction matrix (νik -µik) 

1 1

     ( ) ( ) ,   ik ik

M M
e

k k i i
i i

ER K A A kν µ

= =

= ∞ ⇒ = ∈∏ ∏ N  (9.23) 

( )

1 2

( )

+ ,  ,  
KD k

mi
i

a r g o o
i i i i i ik k ij j KI

j N

AE
L E

t

E E E E E A D R D R k N i M
∈

∂
+ =

∂
⎛ ⎞

+ + + + + ∈ ∈⎜ ⎟⎜ ⎟
⎝ ⎠

∑
 (9.24) 

1 2( ) ,  ,  j m a r g o o
j j j j j j C

AT
L T T T T T T j N i M

t
∂

+ = + + + + ∈ ∈
∂

 (9.25) 

where Kk
e is the equilibrium constant of the k-th fast reaction; Ai is the activity of the i-th 

species; NE is the number of equilibrium reactions; Ei and Ei
m are the concentration of the 

i-th kinetic variable and its mobile composition, respectively, resulting from the 
decomposition of the reaction matrix; Ei

a, Ei
r, Ei

g, Ei
o1, and Ei

o2 are the source of the i-th 
kinetic variable from artificial addition, rainfall, groundwater exfiltration, overland bank 
1, and overland bank 2, respectively; Dij is the i-th row and j-th column of the 
decomposed reaction matrix; NKD(k) is the subset of linearly dependent kinetic reactions 
which depends on the k-th linearly independent reaction; NKI is the number of linearly 
independent slow kinetic reactions; Tj and Tj

m are the concentration of the j-th component 
and its mobile composition, respectively, resulting from the decomposition of the 
reaction matrix; Tj

a, Tj
r, Tj

g, Tj
o1, and Tj

o2 are the source of the j-th component from 
artificial addition, rainfall, groundwater exfiltration, overland bank 1, and overland bank 
2, respectively; and NC is the number of components.  Equations (9.23) through (9.25) 
along with initial and boundary conditions form the basis of a computational model.  For 
every mobile species, the same four types of global boundary conditions and two types of 
internal boundary conditions specified for salinity transport are included.  From the 
boundary conditions for biogeochemical species, the boundary conditions for kinetic 
variables and components can be derived. 
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B.  Two-Dimensional Overland Flow Regime. 
 

The governing equations for two-dimensional density-dependent overland flow and 
reactive biogeochemical transport over the land surface can be derived based on the 
conservation principle of mass, energy, and momentum just as in the case of one-
dimensional rive/stream/canal networks.  These governing equations, which correspond 
to Eq. (9.1) and (9.2), (9.8) through (9.10), (9.15), (9.16), (9.17), (9.18) and (9.19), and 
(9.23) through (9.25), can be obtained without a laborious derivation, i.e., they can 
simply be had based on one-dimensional equations.  This is achieved by (1) replacing the 
cross-sectional area A with the water depth h, (2) replacing the top width B with 1 (one), 
(3) replacing the wet perimeter P with 1 (one), (4) replacing the hydraulic radius R with 1 
(one), (5) replacing the discharge Q with Vh (where V is the depth-averaged velocity 
vector), and (6) replacing the partial differential operator ∂()/∂x with the divergence 
operator ∇xy⋅() if it operates on a vector or with the gradient operator ∇xy() if it operates 
on a scalar [The subscript xy is meant to operate over the x and y coordinates].  In 
addition, all source terms in the one-dimensional equations, which are due to the 
contribution of overland, should be dropped in their corresponding two-dimensional 
equations.  Three characteristic equations of the fully dynamic wave approach in 
modeling two-dimensional sheet flow can be derived in a manner similar to the case of 
one-dimensional river flow [9]. 

All types of global boundary conditions that are included in the one-dimensional 
cases are included in the two-dimensional cases.  The internal boundary conditions of 
control structures (mainly culverts) are also included.  The internal boundary conditions 
of junctions are not needed in the case of two-dimensional problems.  However, a new 
type of internal boundary conditions on the interface between the overland regime and 
river/stream/canal networks is implemented.  This is done (1) by settling two-dimensional 
fluxes equal to one-dimensional source terms and (2) imposing the equality of water 
surfaces across the interface between the overland regime and the river when they are 
continuous or by formulating the fluxes when they are not [9]. 

 
C.  Three-Dimensional Subsurface Media. 
 
1. Density-Dependent Flow 
 

The governing equation of subsurface density dependent flow through saturated-
unsaturated porous media can be derived based on the conservation law of water mass 
[13].  It is written as follows 

*

,   

 ,    ' '

o o o

o e
e e

e

hF q
t

dSh z F a n
n d

⎛ ⎞ρ ∂ ρ ρ
= −∇⋅ +⎜ ⎟ρ ∂ ρ ρ⎝ ⎠
⎛ ρ ⎞ θ

= − ⋅ ∇ + ∇ = + β θ +⎜ ⎟ρ⎝ ⎠

V

V K
h

   (9.26) 

where ρ is the density of water [M/L3]; ρo is the reference density of water [M/L3]; F is 
the water capacity [1/L]; h is the referenced pressure head [L]; ρ* is the density of source 
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water; q is the source and/or sink [L3/t/L3]; V is the Darcy velocity [L/t]; K is the 
hydraulic conductivity tensor [L/t]; z is the potential head [L]; α’ and β’ are the modified 
compressibility of the medium  and water [1/L]; θe is the effective moisture content 
[L3/L3]; ne is the effectively porosity [L3/L3]; and S is the degree of saturation.  

Five types of boundary conditions are taken into account.  The first type is the 
Dirichlet boundary condition where the pressure head is prescribed as a function of time.  
The second type is the Cauchy boundary condition where the volumetric fluxes are 
prescribed as functions of time.  The third type is the Neumann boundary condition 
where the pressure-gradient fluxes are prescribed as functions of time.  The fourth type is 
the radiation boundary condition where the volumetric fluxes are proportional to the 
difference between the pressure head and river depth.  The fifth type is the variable 
boundary conditions where either a Dirichlet boundary condition or a flux boundary 
condition is chosen by the model using a cyclic iteration approach.  The fourth type 
boundary condition is used only when the subsurface flow is not coupled to the river flow 
and the fifth type of boundary condition is used only when the subsurface flow is not 
coupled to the overland flow. 
 
2.  Thermal Transport 
 

The thermal transport equation is derived based on the conservation of energy: 
( ) ( ) ( )b m a cC C T

C T T H H
t

∂ ρ θ+ρ⎡ ⎤⎣ ⎦ + ∇ ⋅ ρ − ∇ ⋅ ⋅∇ = +
∂

hV D    (9.27) 

where θ is the moisture content [L3/L3]; ρb is the bulk density of the media [M/L3]; Cm is 
the heat capacity of the matrix [L2/t2/T]; T is the temperature [T]; Dh is the apparent 
thermal conductivity tensor including the effect of dispersion, diffusion, and conduction 
[E/t/L/T = ML/t3/T, where E is the unit of energy]; Ha is the heat source due to artificial 
injection/withdraw [E/t/L3 =M/L/t3], and Hc is the heat source due to biogeochemical 
reaction [E/t/L3=M/L/t3]. 

In addition to the initial boundary condition, boundary conditions must be specified 
for the temperature.  Five types of global boundary conditions are provided.  The first 
type is the Dirichlet boundary condition where the temperature is prescribed as functions 
of time.  The second type is the Cauchy boundary condition where the heat flux is 
prescribed as a function of time.  The third type is the Neumann boundary condition 
where the temperature gradient is prescribed as a function of time.  The fourth type is the 
variable boundary conditions where the temperature gradient is zero if the flow is 
directed out of the region.  If the flow is directed into the region, the heat flux is given by 
the product of the time-dependent incoming fluid temperature and discharge. 

The fifth type is the energy budget condition applied at the atmosphere-land interface 
( ) n b eC T T H H H H− ⋅ ρ − ⋅∇ = − − −hn V D s    (9.28) 

where Hn is the heat source from net radiation [E/t/L2=M/t3]; Hb is the heat sink due to 
back radiation from the surface to the atmosphere [E/t/L2=M/t3]; He is the heat sink due to 
evaporation [E/t/L2=M/t3]; and Hs is the heat sink due to sensible heat flux [E/t/L2=M/t3]. 

 Beside the five types of global boundary conditions, two interface boundary 
conditions may be specified: one for the exchange of energy/heat flux between the 
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subsurface media and river/stream/canal networks and the other for energy/heat exchange 
between the subsurface media and the overland regime.  Detail mathematical descriptions 
of these two types of interfacial boundary conditions can be found elsewhere [9]. 
 
3.  Salinity Transport 
 

The salinity transport equation for three-dimensions is similar to Equation (9.17) of 
one-dimension, 

( ) ( ) ( ) a
s

S
S S

t
∂ θ

+ ∇⋅ − ∇⋅ θ ⋅∇ =
∂

sV D M    (9.29) 

where S is the salinity [M/L3]; Ds is the longitudinal dispersion coefficient [L2/t]; and Ms
a 

is the artificial source of the salt [M/t/L3].  The same four types of global boundary 
conditions for one-dimension and two-dimensions are included in three-dimensions.  In 
addition, two interface-boundary conditions may be specified: one for the exchange of 
salt flux between the subsurface media and river/stream/canal networks and the other for 
salt exchange between the subsurface media and the overland regime.  Mathematical 
descriptions of these two interfacial boundary conditions can be found in Yeh et al. [9]. 
 
4.  Reactive Biogeochemical Transport 
 

Reactive biogeochemical transport equations for three-dimensions are similar to 
those for one-dimension and are given below [9]  

( ) (

( )  

where  ( )

ai i i
i i i i i N

c
i i i i i i

C L C M r
t

L C V C D C

θ ρ α ρ

ρ ρ θ ρ

∂
+ = +

∂

)⎡ ⎤= ∇ ⋅ − ∇ ⋅ ⋅∇⎣ ⎦

 (9.30) 

( ) ,   i i i
i N reaction ik ik k

k N

d Cr R
dt

θ ρ ν µ
∈

= = −∑ i M∈  (9.31) 

( )( ) ,  ai i i
i i i i ik ik k

k N

C
L C M R i M

t ∈

∂
+ = + −

∂ ∑θ ρ
α ρ ν µ ∈  (9.32) 

1 1

     ( ) ( ) ,   ik ik

M M
e

k k i i
i i

R K A A kν µ

= =

= ∞ ⇒ = ∈∏ ∏ EN  (9.33) 

( )

( ) + ,  ,  
KD k

m ai i
i i ik k ij j KI

j N

E
L E E D R D R k N i M

t ∈

⎛ ⎞∂
+ = + ∈ ∈⎜ ⎟⎜ ⎟∂ ⎝ ⎠

∑θ  (9.34) 

( ) ,  ,  i j m a
j j C

T
L T T j N i M

t
θ∂

+ = ∈ ∈
∂

 (9.34) 

where θi is the volume fraction of the phase associated with the i-th species; Ei and Ei
m 

are the concentration of the i-th kinetic variable and its mobile composition, respectively, 
resulting from the decomposition of the reaction matrix; Ei

a is the source of the i-th 
kinetic variable from artificial addition in mass per unit medium volume; Tj and Tj

m are 
the concentration of the j-th component and its mobile composition, respectively; Tj

a is 
the source of the j-th component from artificial addition in mass per unit medium volume.  
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Equations (9.33) through (9.35) along with initial and boundary conditions form the basis 
of a computational model for reactive transport in subsurface media.  For every mobile 
species, the same four types of global boundary conditions for one-dimension and two-
dimensions are included in three-dimensions, from which the global boundary conditions 
for Ei and Tj can be derived using the definition of Ei and Tj. 

 
D.  Coupling of Flow and Transport among Various Media. 
 
One of the critical issues in a first-principle, physics-based watershed model is its 
treatment of coupling among various media.  There appear a number of watershed models 
that have dealt with each component medium on the bases of first principle in the past 
decade (MIKE SHE [14], SHETRAN [15], MODFLOW-HMS [16], InHM [17], GISWA 
[18], SFRSM-HSE [19], WASH123D [9]). However, rigorous considerations on coupling 
among media seemed lacking.  For example, a linkage term is normally formulated 
between the river/stream/canal dynamics and subsurface fluid flow (e.g., MODNET [20]) 
or between overland and subsurface flows (e.g., MIKE SHE).  The linkage term usually 
introduces non-physics-based parameters.  As a result, such watershed models have 
degraded even though each media-component module has taken a first-principle, physics-
based approach.  A rigorous treatment of coupling media should be based the continuity 
of mass, momentum, and state variables across media interfaces.  This is the approach 
taken here.  Mathematical statements on coupling between pairs of media are too long to 
cover in this Chapter.  Only conceptual statements are briefly presented, detail 
mathematical representations to translate these statements can be found elsewhere [9]. 
 
1.  Coupling between River/Stream/Canal Networks and Overland Regime 
 

The fluxes between overland regimes and canal/stream/river network are dynamic 
and depend on the water surface elevations in the vicinity of the interface between the 
canal/stream/river and overland regime.  The basic principle of coupling is to impose 
continuity of fluxes and the state variables (water surface elevations, temperature, and 
salinity, and chemical concentrations in the overland regime and in the river/stream/canal 
network), if these state variables do not exhibit discontinuity.  If the state variables 
exhibit discontinuities, then linkage terms are used to simulate the volumetric fluxes and 
simplified equations are used to calculate the heat, salinity, sediment, and biogeochemical 
fluxes.  

When a levee is present on the bank of canal, there are several possibilities of 
dynamic interactions between overland flow and canal flow dynamics.  If water surfaces 
in both the overland regime and the canal are below the top of the levee, the two flow 
systems are decoupled.  When the water surface in the overland regime is above the top 
of the levee and in the canal is below the top of the levee, the fluxes of water, heat, salt, 
and biogeochemical species are functions of the water depth in the overland regime.  On 
the other hand, when the water surface in the overland regime is below the top of the 
levee and in the canal is above the top of the levee, the fluxes are functions of the water 
depth in canals.  When the water surfaces in the overland and canal are above the top of 
the levee, then the continuity of water flux and water surface must be imposed.  For 
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scalar transport (including thermal, salinity, and biogeochemical species), either 
continuity of state variables and mass fluxes may be imposed or the mass fluxes may be 
formulated based on the flow direction considering only the advective transport. 

When a levee is not present on the bank of the river, there are two possibilities of 
dynamic interactions between overland flow and river flow dynamics.  If water surface in 
the river falls below the bank, fluxes are either zero if the overland flow is not present or 
are nonzero and directed from the overland into the river if overland flow is present.  
When the water surface in the river is above the bank, the direction of flow can be either 
from the overland into the river or from the river into the overland depending on the flow 
dynamics in the overland and in the river.  The water flux is obtained by imposing the 
continuity of the water surface.  Fluxes for scalar transport can be obtained either by 
imposing the continuity of state variables or by formulating fluxes considering only the 
advective transport. 
 
2.  Coupling between Overland Regime and Subsurface Media 
 

The volumetric flux between overland regime and subsurface media is obtained by 
imposing continuity of fluxes and state variables, if these state variables do not exhibit 
discontinuity.  If the state variables exhibit discontinuity, then a linkage term is used to 
simulate the flux.  Let us consider the interaction between the overland and subsurface 
flows.  There are two cases: in one case, there are no impermeable layers on the ground 
surface and, in another case, there are thin layers of very impermeable layers such as 
pavements or sediment deposits on the ground surface.  For the case of no impermeable 
layers on the ground surface, it can easily be seen that the pressures in the overland flow 
and in the subsurface media will be continuous across the interface.  Thus, the interaction 
must be simulated by imposing continuity of pressures and fluxes.  For the case with thin 
impervious layers, one can include the impervious layers as part of the subsurface media 
or exclude these layers from the modeling.  If one includes the thin layers, then it is 
obvious the pressures in the overland flow and in the layer are continuous across the 
interface, thus continuity of pressure and flux must be imposed to simulate the 
interaction.  On the other hand, if the thin layers are not included, it is obvious that the 
pressures in the overland flow and the subsurface are not continuous across the removed 
layers.  Then a linkage-term is used to model the flux across the interface.  The 
parameters in the linkage term are the material properties and geometry of the removed 
layers.  These parameters, in theory, can be obtained independent of model calibration. 

The coupling of scalar transport between the overland regime and subsurface media 
can be achieved by assuming advective transport only if the state variables are 
discontinuous across the interface.  Otherwise, the coupling must be made by imposing 
the continuity of state variables across the interface to yield appropriate fluxes. 
 
3.  Coupling between Subsurface Media and River/Sream/CanalNetworks 
 

The coupling between subsurface media and river/stream/canal/networks is almost 
identical to that between the subsurface media and overland regime. 
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III. NUMERICAL APPROXIMATIONS 
 

One of the most critical issues in a first-principle, physics-based watershed modeling 
is the use of appropriate numerical methods to approximate the governing equations.  For 
research applications, the model needs to use accurate and robust methods.  For practical 
applications, it needs to employ efficient and robust methods.  For hyperbolic-dominant 
transport equations such as the fully dynamic wave approach of flow and the advection-
dominant scalar transport, it is well known that the semi-Largrangian (SL) method is 
most efficient in discretizing the advection transport while the conventional second-order 
finite element or finite difference methods are sufficient to approximate the 
diffusive/dispersive transport.  Considering that there can be wide ranges of flow and 
transport conditions for real-world problems, we provide many numerical options in 
WASH123D. 

For surface water flow simulations, the numerical method that is most appropriate 
for a particular approach is used.  In kinematic-wave approaches, the semi-Lagrangian 
method (backward particle tracking) is used to numerically approximate the kinematic-
wave equation.  In the diffusive wave approach, either the Galerkin finite element method 
or the semi-Lagrangian method is employed to numerically solve the diffusion equation 
governing the transport of water surface elevation.  In the fully dynamic-wave approach, 
the hybrid Lagrangin-Eulerian finite element method is applied to approximate the 
method of characteristic (MOC) form of wave equations.  First, water depth and velocity 
are computed with the backward method of characteristics.  Then the Galerkin finite 
element method is applied to the Lagrangin form of an eddy-diffusion equation.  For 
subsurface flow simulations, the Galerkin finite element method is used to discretize the 
Richards equation. The Picard method is applied to deal with the nonlinearity of flow 
equations. 

For transport simulations (including thermal, salinity, sediment, and water quality), 
two options are provided to discretize the governing sediment and biogeochemical 
transport equations: hybrid Lagrangian-Eulerian finite element methods or conventional 
finite element methods.  Three schemes are employed to handle the coupling between the 
hydrologic transport and biogeochemical reactions: fully implicit sequential iteration 
approach, operator splitting, and mixed predictor-corrector and operator-splitting.  The 
Newton-Raphson method was used to solve the set of algebraic equations and ordinary 
equations describing the evolution of all biogeochemical species. 

Details of the aforementioned numerical methods can be found elsewhere [9].  
 

IV. DEMONSTRAVE EXAMPLES 
 

Five example problems are used to demonstrate the design ability and flexibility of 
WASH123D to solve a variety of problems.  Example 1 involves one-dimensional flow 
problems with three cases to illustrate the capability of the model to simulate subcritical, 
mixed subcritical and supercritical, and hydraulic jump problems and to assess the 
adequacy of using diffusive and dynamic wave approaches.  Example 2 is a two-
dimensional overland flow problem used to compare the simulations with kinematic, 
diffusive, and fully dynamic wave approaches.  Example 3 is a three-dimensional density 
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dependent subsurface flow problem.  Example 4 is a flow problem in an integrated one-
dimensional canal network, overland regime, and subsurface media system demonstrating 
the successful coupling based on physics.  Example 5 is a reactive biogeochemical 
problem in a canal illustrating the generality of the paradigm in modeling water quality. 

 
A.  One-Dimensional River/Stream/Canal Flow Problems. 
 

Three cases are presented for the one-dimensional problems in the river/stream/canal 
system.  Case 1 is a steady-state subcritical flow problem, which shows there are some 
errors in the diffusive wave approximation even for this simple problem.  Case 2 is a 
steady-state mixed subcritical and supercritical problem, which is designed to 
demonstrate the magnitude of errors introduced with the diffusive wave approximation.  
Case 3 is a steady-state, mixed subcritical and supercritical problem with a hydraulic 
jump.  This problem demonstrates that the diffusive wave approximation is not adequate 
for this complicated problem.  In all three cases, steady-state simulations were achieved 
via transient simulations with constant boundary and source conditions.  
 
1.  Subcritical Flow 
 

This is the test problem published by MacDonald et al. [21], where an analytical 
solution for the problem is available.  The channel is rectangular with a width of 10 m. 
The total length is 1,000 m. A constant flow of 20 m3/s passes through. The flow is 
subcritical over the entire channel. A water depth of 0.748409 m is specified at the 
downstream outlet. The Manning’s n value is 0.03. The bed slope is given by an 
analytical function of the water depth.  Simulated steady-state profiles of water depth 
with diffusive wave (DIW) and fully dynamic wave (FDW) approaches are given in 
Figure 9.3.  It is seen that the FDW approach yields excellently accurate results while the 
DIW approach produces some errors. 
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Fig. 9.3  Comparison of Simulated Water Depth Profiles with Exact Solution 
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2.  Mixed Subcritical and Supercrical Flow 
 

This test case was described in MacDonald et al. [21].  A 1,000 m of rectangular 
channel with a width of 10 m is given a constant flow rate of 20 m3/s.  The bottom slope 
is variable such that the flow condition at the inflow is subcritical and is supercritical at 
the outlet.  The Manning’s n value is 0.02.   For the dynamic wave approach, one inflow 
boundary condition is specified at the upstream and no boundary condition is needed at 
the downstream since supercritical flows occur therein.  For diffusive wave model, two 
boundary conditions must be given: one is the upstream boundary condition where the 
inflow rate is prescribed as in the case of FDW approach and the other is the downstream 
boundary condition.  In this case, the known water depth at outlet is specified as the 
Dirichlet boundary conditions.  

The dynamic wave model is able to solve this mixed flow problem with good 
accuracy (Fig. 9-4).  No numerical instabilities have been encountered. The diffusive 
wave model also provides satisfactory results (4% error in water depth). The Froude 
number profile plot not shown here confirms the mixed flow condition.  It is interesting 
to note that the DIW model requires more input data than the FDW model, yet yields 
poorer simulations.  
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Fig. 9.4  Comparison of Simulated Water Depth Profile with Exact Solutions 

 
3.  Mixed Subcritical and Supercrical Flow with Hydraulic Jump 
 

This test case was described in MacDonald et al. [21].  The channel is trapezoidal 
with a total length of 1,000 m.  The upstream inflow is a constant discharge of 20 m3/s.  
At the downstream outlet, a specified water depth of 1.349963 m is applied.  The side 
slope of the trapezoidal cross-section is 1:1.  The Manning’s n value is 0.02.  There is an 
abrupt change in the bed slope at x = 500 m, causing a hydraulic jump.  The bottom 
elevation and bed slope were given in MacDonald et al. [21].  Both inflow and outflow 
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boundaries are subcritical.  This is a non-trivial problem with source terms (roughness 
and bed slope) and is more realistic in testing the performance of the FEM based method 
of characteristics. 

As expected, the accuracy of the diffusive wave approximation for this mixed flow 
case is not satisfactory.  The error induced by diffusive wave approximation is high at the 
supercritical zone (Fig. 9.5). 
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Fig. 9.5  Comparison of Simulated Water Depth Profile with Exact Solution 

 
B.   Two-Dimensional Overland Flow Problems. 
 

A rainfall-runoff process on an impervious curved surface is simulated (Fig. 9.6). 
The domain is 150 m x 40 m.  The bottom elevation ranges from 0.11 m to 0.31 m over a 
horizontal length of 150 m.  The overland domain is divided into 80 elements and 105 
nodes.  A specified water depth of 0.1 m is applied to the downstream end boundary. All 
other sides are assumed to be no-flow boundaries.  A Manning’s n value of 0.02 is used. 
The rainfall intensity is 3.0-5 m/s for 1,800 seconds (30 minutes).  The purpose of this 
numerical experiment is to compare the simulation results obtained with different 
computational methods for 2-D overland flow and validate the numerical implementation 
for dynamic, diffusive and kinematic wave models. The average bottom slope is 0.00133. 

The fully dynamic wave equations and diffusive wave and kinematic wave 
approximations were applied to this problem.  The simulation results were compared.  
The computed water levels at Node 28 (x = 20 m, y = 30 m, Zo = 0.152 m) were 
compared (Fig. 9.7).  This location is close to the downstream end. The maximum value 
of water level, found to be 0.173 m, 0.180 m and 0.181 m, was obtained with fully 
dynamic wave (MOC), diffusive wave (SL), and kinematic wave (SL) approaches. The 
difference between the dynamic wave and diffusive wave models is about 6%.  This may 
indicate the diffusive wave approximation is not accurate for this problem.  Similar 
conclusions can be made for the kinematic wave model.  Water levels at Node 88 (x = 20 
m, y = 130 m and zo = 0.278 m), which represent the flow at upper part of the surface, 
were compared (Fig. 9.8).  The maximum water depth at this site is 0.01124 m, 0.0094 m 
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and 0.00776 m for FDW (MOC), DIW (SL), and KIW (SL), respectively.  The 
differences between the fully dynamic wave and diffusive/kinematic wave models at the 
upstream nodes are smaller than those at the downstream nodes as expected. 

 

 
Fig. 9.6  Topography of the Land Surface 
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Fig. 9.7  Comparison of Simulated Water Levels 
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Fig. 9.8  Comparison of Simulated Water Levels 
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C.   Three-Dimensional Density Dependent Flow in Subsurface Media. 
 

Aquifer Storage Recovery (ASR) injects surface water into an aquifer and then 
recovers it for later water use.  The simple case of a single ASR well is simulated.  Some 
data refers to the 1989 ASR pilot project at Lake Okeechobee, Florida [22], but overall it 
is for demonstration purposes only.  Three-dimensional density driven flow and transport 
are simulated. The injected freshwater is stored and mixed with the brackish water in the 
aquifer.  The diameter of the ASR well is 24 inches.  The screened area is located at 1300 
ft to 1600 ft below land surface.  The storage zone is in the artesian aquifers with a 
confining layer of 400 ft over it.  The saturated hydraulic conductivity is 177.6 ft/day. 
The effective porosity is 0.25.  Only the storage zone will be simulated.  The thickness of 
the aquifer is 300 ft.  A rectangular area of 1,600 x 1,600 ft is chosen for the modeling 
domain. The boundary is to be set away from the ASR well, so that injected water is 
stored within the domain.  Specified head boundary conditions are assigned in the 
direction of natural groundwater flow to represent the background groundwater flow. 
Variable boundary conditions are specified at the perimeter of the ASR well. The 
boundary condition at the screen of the ASR well can be specified head or flux depending 
on the injection pumping pressure.  The 3-D finite element mesh contains three layers. 
The total number of subsurface nodes is 3,280 and the total number of elements is 4,674. 
The size of the elements is designed to be finest within the vicinity of the well (Fig. 9. 9). 

 

 
 

Fig. 9.9  Finite Element Discretization for the ASR Problem 
 

The injection/recovery processes were simulated for 720 hours.  The injection 
stopped at time = 360 hours and then recovery started until the end of the simulation.  
The total head and saline concentration distributions at different times were plotted (Fig. 
9.10 and Fig. 9.11).  The spatial distributions of total head and concentration 
demonstrated the impacts of background flow and density effect.  
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Fig. 9.10  Total Head Distribution (t = 2 [upper left], 359 [upper right], 
 362 [lower left]  and 720[lower right] hours) 

 

  

 
 

Fig. 9.11  Concentration Distribution (t = 12 [upper left], 359 [upper right], 
 520 [lower left] , and 720 [lower right] hours) 
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  The total heads reach steady-state quickly, within two hours of beginning the 

injection and within two hours of starting the recovery (Fig. 9.10).  This is due to the fact 
that the storativity of media for water under saturation flow conditions is from the 
compressibility of water and the compressibility of matrix, which are very small.  Had 
these compressibilities been set to zero, the steady-state simulations would have been 
achieved instantaneously at the starts of injection and recovery.  Since the storativity of 
the media for chemicals is the porosity, the variation of salinity is gradual with time (Fig. 
9.11). 
 
D.   Coupled Canal, Overland, and Subsurface Flow. 
 

This is a sub-regional scale modeling effort for the south Florida wetlands.  The 
Dade model domain extends from four miles west of the L-67 Extension dike to the 
western shore of Biscayne bay and from one mile north of the Tamiami canal south to 
Florida bay.  Horizontally, it covers an area of approximately of 1,200 mi2.  Vertically, it 
extends from the land surface to the bottom of the surficial aquifer.  

Some characteristics of this model are strong interaction of overland flow, 
groundwater flow, and canal flow in south Florida; and complex hydraulic structure 
operations.  The 3-D finite element mesh for subsurface media (Fig. 9.12) is complex: 
there are 37,760 global nodes and 65,429 elements. There are 7 layers in the vertical 
direction and levees are incorporated as part of the subsurface media. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.12  Subsurface Finite Element Mesh 
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The boundary conditions for subsurface flow were determined from the SFWMM 2 
x 2 model output for the northern boundary and from structure operation records for the 
other sides of the boundaries. 

The surface water flows (2-D overland and 1-D canal flows) were simulated with the 
diffusion wave approach using the Galerkin finite element method.  The 2-D overland 
flow domain consists of 4,720 nodes and 9,347 triangular elements.  Levees are included 
in the computation domain (Fig. 9.13). Boundary conditions were determined from 
structure operation records along the boundary.  The canal network as simplified in this 
simulation includes: 560 canal nodes, 506 canal elements, 55 river reaches, 20 canal 
junctions, and 11 interior gates (Fig. 9.13).  The upstream is specified a flux boundary, 
providing the inflow into the canal network. The downstream are specified stage 
boundaries, which are given by the structure operation at downstream ends.  

 

 
 

Fig. 9.13  2D Overland Mesh and 1D Canal Network 
 
The 1D/2D/3D coupled flow simulation was first begun with a steady state of subsurface 
flow.  Then the steady state condition was used as the initial condition of the transient 
flow simulation of the coupled system.  Figures 9.14 and 9.15 show the simulation results 
of a model run.  Since the levee and dike are included as part of the subsurface media, it 
is demonstrated that the ground water flow from the northern boundary can bypass the 
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less permeable levees via their underlying permeable media.  It is also obvious that the 
canals recharge the ground water. 
 

 
 

Fig. 9.14  Total head Distribution (feet) (time = 13,680 minutes = 9.5 days) 
 
 

 
Fig. 9.15  Overland Water Depth (feet) (time = 7000 minutes = 4.9 days) 
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E.  One-Dimensional River/Stream/Canal Water Quality Transport Problems. 
 

To demonstrate the flexibility and generality of the paradigm to model water quality 
employed in WASH123D [9], the eutrophication models in QUAL2E [23], WASP5 [24], 
and CE-QUAL-ICM [25] can be recast in the mode of reaction networks.  From the 
networks, the number of water quality and the number of biogeochemical reactions vary 
with these three widely used models.  Table 1 lists the comparison of the three models via 
a reaction point of view.  In the original reports, there are 9, 16, and 41 water qualities 
simulated in QUAL2E, WASP5, and CE-QUAL-ICM, respectively.  In the context of 
reaction network, there should be 19, 27, and 66 constituents involved in QUAL2E, 
WASP5, and CE-QUAL, respectively.  The differences between the original reports and 
reaction-based approaches are reconciled in the following two paragraphs. 

In the case of QUAL2E, all rate equations depend on only the first 9 constituents, 
thus, the other 10 constituents can be decoupled from the first 9 in any simulation.   Had 
evidence indicated that the rate of the 16 kinetic reactions also depends on the other 10 
constituents in a system, then all 19 constituents should have been modeled 
simultaneously.  Therefore, when QUAL2E is applied to any system, the first order of 
business is to check if the rate formulation for the 16 kinetic reactions is valid.  If it is, 
then one can consider other issues involved in applying the model to his/her system.   If 
any of the 16 rate equations is invalid, then one should not apply the model to his/her 
system. 

In the case of WASP5, the issue is more complicated.  First, rates of the 32 kinetic 
reactions as given in WASP5 were assumed not to be affected by the last five 
constituents.  Thus, these five constituents can be decoupled from the other 22.  Thus, 
one only needs to simulate 22 constituents simultaneously from the reaction point of 
view.  The question is then why WASP5 only considered 16 water quality state-variables.  
Examination of 6 fast equilibrium reactions would reveal that the adsorption reactions of 
aqueous CH2O, CH2O(b), ON, ON(b), OP, and OP(b) onto sediments were formulated with 
a simple partition.  Furthermore, rate equations are only functions of the aqueous 
fractions of CH2Ot, CH2Ot(b), ONt, ONt(b), OPt, and OPt(b), not functions of 12 individual 
species.  Thus, if we eliminate these twelve species using the 6 partition equations and 6 
equations defining the total, the reaction-based approach would yield 16 identical 
equations as those in the WASP5 report.   In our reaction-based approach, we prefer to 
model all 22 species.  This allows us, if necessary, the flexibility of more mechanistically 
modeling the sorption reactions and formulating the rate equations as functions of all 
individual species.  Similarly, for CE-QUAL-ICM, we prefer to model 48 species out of 
the total 66 species, rather than 41 constituents.  This reaction-based approach alleviates 
the need of modeling 7 sorption reactions with a simple partition as done in WASP5.  In 
the decomposition of the reaction-matrix, the elimination of 7 fast equilibrium reactions 
is performed automatically rather then manually.  Ideally, one should model all of the 66 
species if some of the reaction rates are affected by the other 18 species.  
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Table 1.  QUAL2E, WASP5, and CE-QUAL-ICM from a Reaction Point of View. 
Model QUAL2E WASP5 CE-QUAL-ICM  

Number 
and 
types of 
reaction 

16 kinetic and 0 
equilibrium 
reactions: 
Algal kinetics:  4  
Dissolved Oxygen 
Balance:  4  
Nitrogen Cycle:  5  
Phosphorus Cycle:  
3 

32 kinetic and 6 
equilibrium 
reactions: 
Phytoplankton 
Kinetics: 11 
Dissolved Oxygen 
Balance: 9 
Nitrogen Cycle:  11  
Phosphorus Cycle:  7 

83 kinetic and 7 equilibrium 
reactions: 
Plant and bacterial Kinetics:  
14 
Dissolved Oxygen Balance:  16  
Nitrogen Cycle:  20 
Phosphorus Cycle:  21 
Silica Cycle:  16  
Metal Cycle: 3 

No. of 
species 
in the 
report  

9 
O, L, Chla, N4, N1, 
N2, N3, P1, and P2. 

16 
NH3, NH3(b), NO3, 
NO3(b), OPO4, 
OPO4(b), PHYT, 
PHYT(b), CH2Ot, 
CH2Ot(b),  O2, O2(b),  
ONt, ONt(b), OPt, and 
OPt(b). 

41 
Bc, Bd, Bg, DOC, LPOC, 
RPOC, NH4, NO3, DON, 
LPON, RPON, PO4t, DOP, 
LPOP, RPOP, COD, DO, SU, 
SA, TAM, POC1(b), POC2(b), 
POC3(b), NH41(b), NH42(b), 
NO31(b), NO32(b), PON1(b), 
PON2(b), PON3(b), PO41(b), 
PO42(b), POP1(b), POP2(b), 
POP3(b), COD1(b), COD2(b). 
SU1(b), SU2(b), SA1(b), and SA2(b)

No. of 
water 
quality 
from the 
reaction 
point of 
view 

19 (9 modeled) 
O, L, Chla, N4, N1, 
N2, N3, P1, P2, 
O(b), L(b), Chla(b), 
N4(b), N(1b), P(1b), 
P(2b), CO2, H2O, 
and O2(g)

27 (22 modeled) 
NH3, NH3(b), NO3, 
NO3(b), OPO4, 
OPO4(b), PHYT, 
PHYT(b), CH2O, 
CH2Op, CH2O(b), 
CH2Op(b),  O2, O2(b),  
ON, ONp, ON(b), 
ONp(b), OP, OPp, 
OP(b), OPp(b), 
CO2, H2O, H+, N2, 
and O2(g). 

66 (48 modeled) 
Bc, Bd, Bg, DOC, LPOC, 
RPOC, NH4, NO3, DON, 
LPON, RPON, PO4d, PO4p, 
DOP, LPOP, RPOP, COD, DO, 
SU, SAd, SAp, TAMd, TAMp, 
POC1(b), POC2(b), POC3(b), 
NH41(b), NH42(b), NO31(b), 
NO32(b), PON1(b), PON2(b), 
PON3(b), PO4d1(b), PO4p1(b), 
PO4d2(b), PO4p2(b),  POP1(b), 
POP2(b), POP3(b), COD1(b), 
COD2(b), SU1(b), SU2(b), SAd1(b), 
SAp1(b),  SAd2(b), SAp2(b), 
CO2, H2O, N2, O2(g), Bc(b), 
Bd(b), Bg(b), TAMp(b), BPOC, 
BNH4, BNO3, BPON, BPO4, 
BPOP, BCOD, BSU, BSA, and 
BTAM 

 
To demonstrate the general paradigm, we apply WASP5 to a canal reach. The canal 

considered is 15,545 ft-long with width ranging from 15 to 40 ft. It is descretized by 9 
elements with variable size of 1,690 to 1,801 ft. The flow pattern was simulated using the 
one-dimensional flow module of WASH123D.  The calculated water depth ranges from 
7.15 to 9.22 ft and river/stream velocity from 0.193 to 2.9 ft/s.  Manning’s roughness is 
0.01.  To focus on reactive biogeochemical transport, the depth of the canal bed is 
assumed 0.5 ft, the temperature is 15˚C, the suspended sediment concentration is 1g/m3, 
and the bed sediment concentration is 15 g/m2 throughout the canal.  Dirichlet boundary 

 27



 

condition is applied to the upstream boundary node.  Flow-out variable boundary 
condition is applied to the downstream boundary node.  Initial concentrations of all 
species and Dirichlet boundary concentrations of mobile species are listed in Table 9.2. 
The longitudinal dispersivity is 300 ft.  A 12-day simulation is performed with a fixed 
time step size of 6 minutes. 
 

Table 9.2. Chemical Species Included in the Eutrophication Simulation 
Species Notation Initial  Boundary  Units 
Ammonia Nitrogen NH3 0.1 1 mg N/L 
Benthic Ammonia Nitrogen NH3(b) 0.1 - mg N/L 
Nitrate Nitrogen NO3 0.1 1 mg N/L 
Benthic Nitrate Nitrogen NO3(b) 0.1 - mg N/L 
Inorganic Phosphorus OPO4 0.01 0.1 mg P/L 
Benthic Inorganic Phosphorus OPO4(b) 0.01 - mg P/L 
Phytoplankton Carbon PHYT 0.2 2 mg C/L 
Benthic Phytoplankton Carbon PHYT(b) 0.2 - mg C/L 
Dissolved Carbonaceous BOD CBOD 1.0 10 mg O2/L 
Particulte Carbonaceous BOD CBOD(p) 1.0 10 mg O2/L 
Benthic Dissolved Carbonaceous BOD CBOD(b) 1.0 - mg O2/L 
Benthic Particulte Carbonaceous BOD CBOD(bp) 1.0 - mg O2/L 
Dissolved Oxygen DO 0.2 2 mg O2/L 
Benthic Dissolved Oxygen DO(b) 0.2 - mg O2/L 
Dissolved Dissolved Organic Nitrogen ON 0.2 2 mg N/L 
Particulte Dissolved Organic Nitrogen ON(p) 0.0 0 mg N/L 
Benthic Dissolved Organic Nitrogen ON(b) 0.2 - mg N/L 
Benthic Particulte Organic Nitrogen ON(bp) 0.0 - mg N/L 
Dissolved Organic Phosphorus OP 0.035 0.35 mg P/L 
Particulte Organic Phosphorus OP(p) 0.015 0.15 mg P/L 
Benthic Dissolved Organic Phosphorus OP(b) 0.035 - mg P/L 
Benthic Particulte Organic Phosphorus OP(bp) 0.015 - mg P/L 

 
Figures 9.16 through 9.19 plot the concentration distribution of PHYT, DO, PHYT(b), 

and DO(b) at different times.  The similar pattern in concentration of PHYT and DO 
indicates that the concentration change of these mobile species is mainly controlled by 
the advection-dispersion transport rather than the biogeochemical reactions (Fig.  9.16 
and 9.17).  However, the concentration change of immobile benthic species PHYT(b) and 
DO(b) is mainly affected by the biogeochemical reactions. 

In the benthic immobile water phase, the concentration change of PHYT(b) is due to 
its decomposition and PHYT settling.  Figure 9.18 shows increasing concentration of 
PHYT(b), indicating that the settling rate of PHYT is greater than the PHYT(b) 
decomposition rate.  The concentration change of DO(b) is due to its consumption by 
oxidation and it production by diffusion from DO.  Figure 9.19 shows decreasing 
concentration of DO(b) at upstream.  This indicates that at the upstream the diffusion rate 
from DO is less than the consumption of oxidation.  As the simulation time increases, 
there is more DO downstream.  Figure 9.19 shows an increasing concentration of DO(b) 
downstream, demonstrating that the increased diffusion rate from DO is greater than the 
consumption by oxidation. 
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Fig. 9.16 Concentration Distribution of PHYT
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Fig. 9.17 Concentration Distribution DO 
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Fig. 9.18 Concentration Distribution of PHYT(b)
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Fig. 9.19 Concentration Distribution of DO(b) 
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V. SUMMARY 

 
A first-principle, physics-based computational model has been developed that 

integrates multimedia of one-dimensional river/stream/canal networks, two-dimensional 
overland regime, and three-dimensional subsurface media and that integrates multi-
processes of flows, thermal transport, salinity transport, sediment transport, and reactive 
biogeochemical transport in watersheds.  Surface water flows in river/stream/canal 
networks and overland regime can be modeled with fully dynamic wave, diffusive wave, 
or kinematic wave options.  Vadose zone and saturated zones are considered an integral 
system of the subsurface media in which variably saturated flows occur.  Thermal and 
salinity transport are coupled with St Venant equations in surface waters and with 
Richards equations in subsurface media to provide density-dependent flow simulations.  
Bed sediment balance and suspend sediment transport are included to affect reactive 
biogeochemical transport and constitute an integral set of water quality modeling. A 
diagonalization approach is applied to reactive biogeochemical species transport 
equations to yield three subsets of governing equations that may greatly reduce the 
number of transport equations and that allow the formulation of reaction rate one by one. 

To allow the application of the model to both research and practical problems, 
various numerical methods are applied to discretize the governing equations.  These 
include characteristics-based semi-Largrangian methods for fully dynamic wave flows, 
finite element methods or semi-Largrangian methods for diffusive wave flows, and semi-
Largrangian methods for kinematic wave flows in surface waters.  For subsurface flows, 
the Galerkin finite element method is employed.  For scalar transport (including thermal, 
salinity, sediment, and reactive biogeochemical transport), the hybrid Lagrangian-
Eulerian method is used.  Three optional schemes are implemented to deal with the 
interactions between transport and biogeochemical reactions. 

Five example problems are used to demonstrate the design capability of the model.  
They also serve the purposes of need of various approaches to model surface water flows.  
The example of reactive biogeochemical transport shows the generality and flexibility of 
the diagonalized, reaction-based paradigm in modeling water quality.  The three widely 
used water quality models can be cast in the mode of reaction networks.  
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