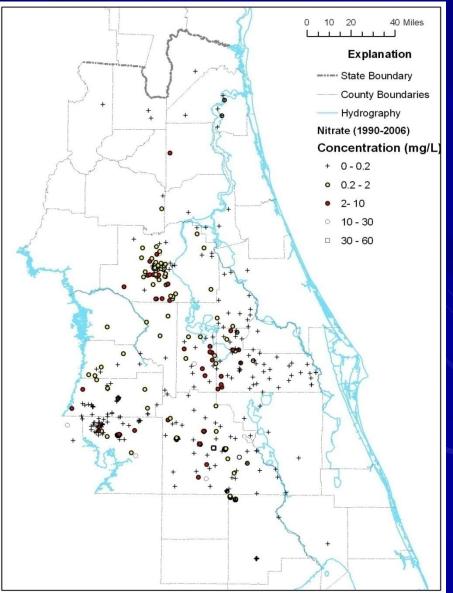
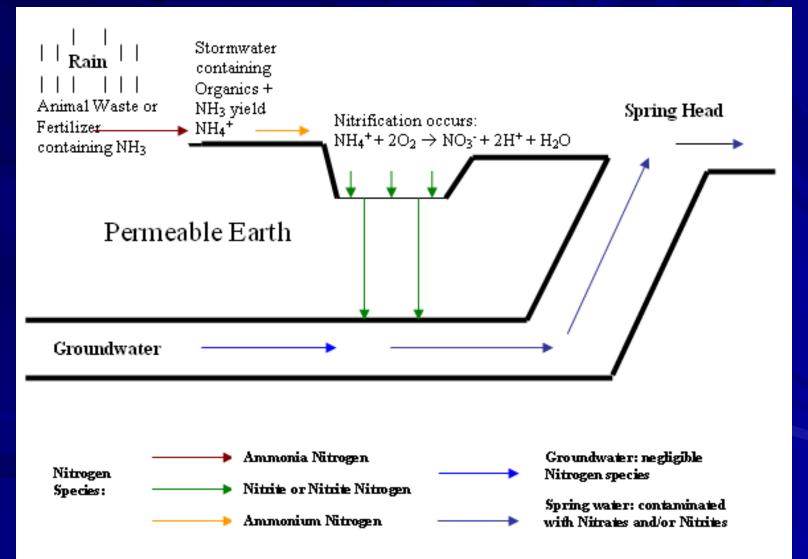
THE EFFECTIVENESS OF BIOSORPTION ACTIVATED MEDIA (BAM) TO REDUCE NITRATE AND ORTHOPHOSPHATE IN STORMWATER RUNOFF PART 1: Literature and Laboratory Results

Marty Wanielista, 2013

Why?


- Some groundwater and surface water supplies are decreasing in quantity and quality
- Stormwater runoff- medium of transport for nutrients and pollutants
- Stormwater runoff may impair groundwater and surface water

Why?


- Nitrate concentrations in Florida springs have been increasing for 50 years (USGS, 2008)
- Nitrate in Silver Springs has increased from 0.5 mg/L NO₃-N (1960) to 1.0 mg/L NO₃-N (2003) (Phelps, 2004)

Why?

- Springs and lakes are currently suffering from reduced water quality caused by excess nutrients
- Elevated nutrient levels are responsible for approximately 45% of lakes and streams listed as impaired by the FDEP

Nitrogen: One possible pathway

Problems

- Stormwater runoff and infiltration provides excess nutrients to lakes, rivers, springs and streams which may lead to Eutrophication
- Algal Growth, degraded aesthetics, lower water quality

Objectives

- Reduction of Nitrate and Phosphorus entering ground water and surface waters
- Reduction of Nitrate and Phosphorus in stormwater runoff
- Reduction of Nitrate and Phosphorus by specifically designed stormwater Biosorption Activated Media filter(BAM)

Background Information

- Nitrogen Removal: typical are filtration, and biological (such as: anammox and nit-denit facultative organisms).
- Nitrification and Denitrification
- Facilitated by bacteria usually attached to a solid
- Requires aerobic conditions for Nitrification
- Requires anaerobic conditions for Denitrification
- Requires an electron donor, examples C, CO₂ for nitrification, S, Fe, Mn
- Can exist for a long time period given proper conditions
- $NO_3 \rightarrow NO_2 \rightarrow NO \rightarrow N_2O \rightarrow N_2$ (Gas)

Background Information

- Phosphorus Removal: typical are sorption, precipitation, ion exchange, and filtration.
- Sorption
- During infiltration Phosphorus tends to readily sorb onto many soils and media types (Crites, 1985)
- May be removed in either aerobic or anaerobic conditions
- Typically has a life expectancy

Objective

 Reduce Nitrogen (Nitrate) and Phosphorus (Orthophosphate) via BAM

- <u>4 Approached:</u>
 - 1. Literature Review
 - 2. Batch Test Experimentation
 - 3. Material Characterization
 - 4. Column Test Experimentation

Literature Review

- 32 different types of media were investigated to reduce Nitrogen and or Phosphorus within stormwater runoff (Moberg, 2008)
- Performance assessment of each potential media using Multi-criteria Decision Making
- Qualitatively and Quantitatively evaluated

Literature Review

- Multicriteria Decision Making:
- 1. Relevance (excellent, very good, good, fair, poor)
- 2. Permeability (High, medium, low)
- 3. Cost (High, medium, low)
- 4. Availability in Florida (yes, no)
- 5. Additional environmental benefit (yes, no)

Literature Review

- Top seven media from literature review move to the batch test
- Florida peat, sandy loam, woodchips, crushed oyster shell, crushed limestone, tire crumb and sawdust
- All selected media may sorb Phosphorus

No.	Soptim Media	Criteria 1		Criteria 2	Criteria 3	Criteria 4	Criteria 5	Orerall*
		la	1Ъ					
1	Florida Peat.	5	5	5	5	5	5	5
2	АББ	3	3	1	1	0	5	2
3	Activated carbon	5	1	1	1	0	5	2
4	Carbon sand, Erretech sand, or sand	5	1	1	1	0	5	2
42	Sandy Loam (SL), Loamy Sand (LS), and Sandy Chy Loam (SCL), Planning soil	5	5	3	5	5	5	4.6
5	Sawdinst (unimeated wood)	3	5	3	5	5	5	4.4
6	Lignocellulosic Materials/wheat straw	3	3	1	1	0	5	2
7	Tire Crumb /electran.danor	4	5	3	3	5	5	41
8	Limestane/ electronic donor	2	5	1	5	5	5	4.88
84	Crushed oysteo/electronic donor	2	5	1	5	5	5	4.88
9	Wood fiberAvood chips/compost	3	4	1	5	5	5	4.88

Past Media Investigations: to illustrate successful removal

- Previous experimentation with sawdust and woodchips has shown Nitrate removals of 95% (Kim, 2000)
- Sand, peat and lime rock column removed approximately 41% of the TP (Debusk, 1997)
- Porous reactive media barriers that consisted of sand, silt, sawdust, peat and gravel and sand achieved between 72% and 97% Nitrate removal (Robertson and Cherry, 1995)

Past Media Investigations: to illustrate successful removal

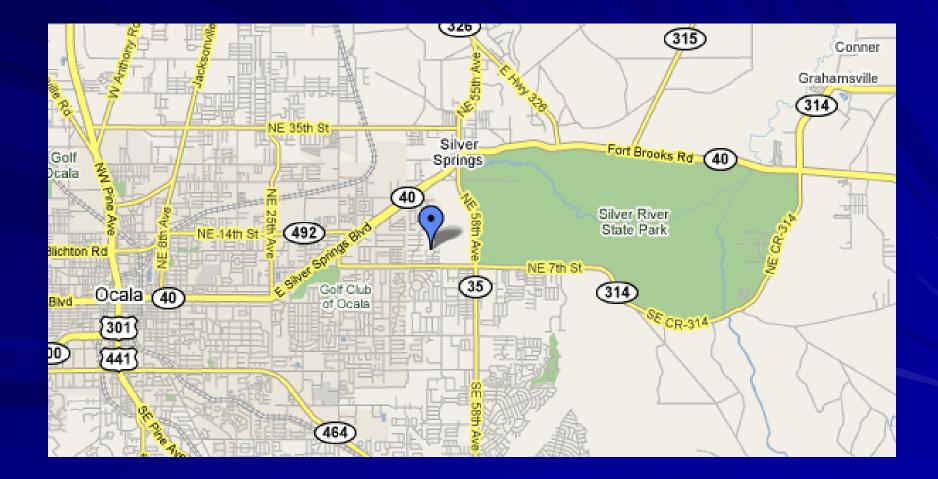
 89% to 96% reduction in ammonium and Nitrate within an infiltration bed comprised of sand and sawdust (Robertson, 1999)

 Average Nitrate removal of 80% for the sulfur/crushed oyster shell filter (Sengupta and Ergas, 2006)

Lab Batch Test Experimentation

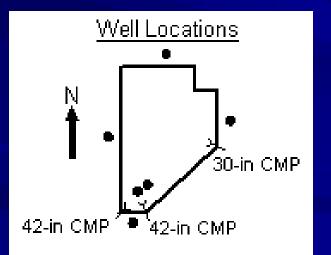
- Aerobic conditions
- Denitrification is not possible within batch test experimentation
- Media performance is based on Orthophosphate (OP) and Ammonia Nitrogen removal
- Top performing media mixes for the 48 hour batch test move to column test experimentation

Batch Test Experimentation


<u>Results:</u>

- Florida peat, woodchips and sawdust add substantial Ammonia Nitrogen to sample
- Cause and effect electron donor and nutrients
- Sawdust adds the least Ammonia
- Tire crumb substantially reduces Orthophosphate
- Crushed oyster shell added considerable Orthophosphate

Batch Test Experimentation


- Media Selection:
- Optimization of electron donor
- Media Mix 1: 50% sand, 30% tire crumb, 20% sawdust by weight
- Media Mix 2: 50% sand, 25% sawdust, 15% tire crumb, 10% limestone by weight
- Control: from Hunters Trace pond in Ocala, FL

Hunter's Trace Location

Hunter's Trace Pond

- ~ 0.8 ac
- 10 ft deep
- Water table ~10 ft below pond bottom

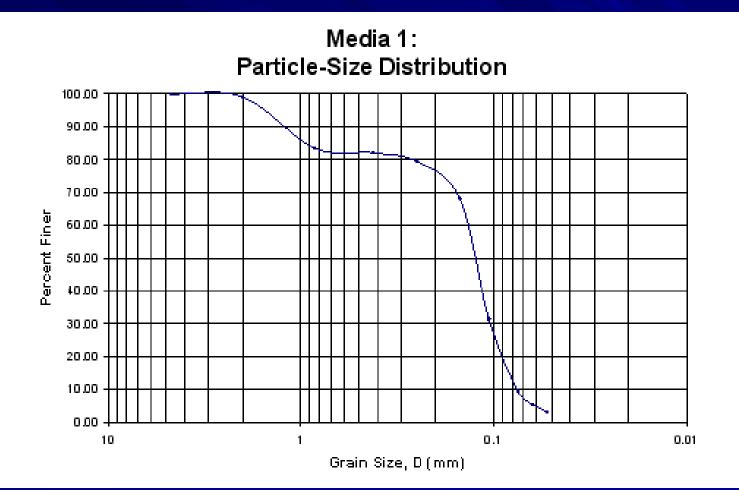
Materials Characterization

 ASTM D-421-85 Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis

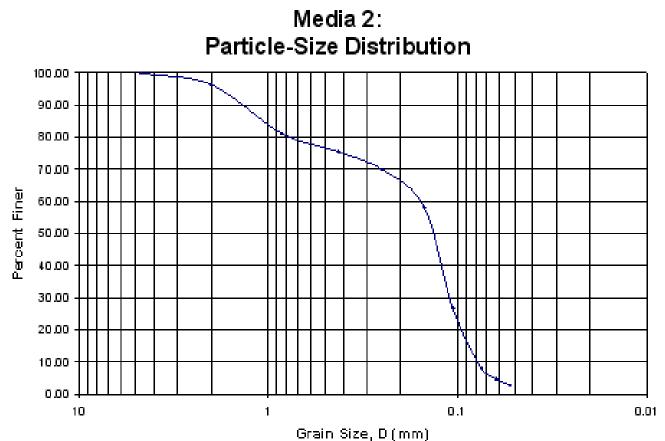
- ASTM C29/C29M-07 for measuring the bulk density ("unit weight")

 ASTM D-854-92 Standard Test Method for Specific Gravity of Soils

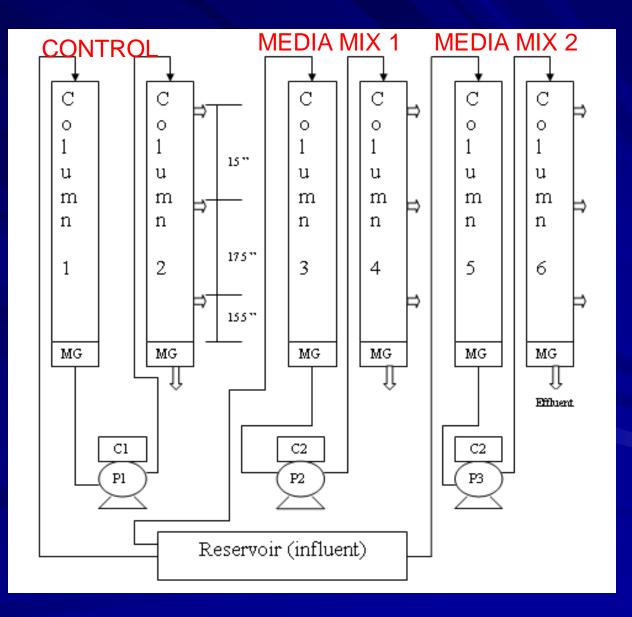
Material Characterization Summary

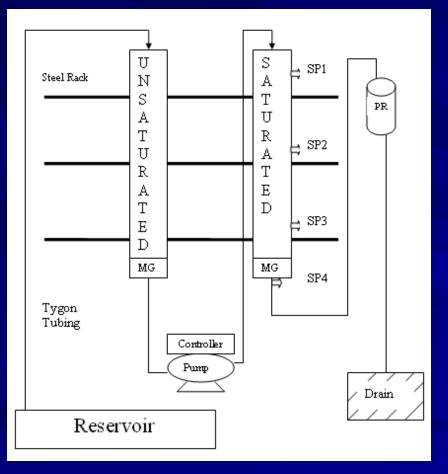

	Hunter's Trace (dry sample)	Hunter's Trace (moist sample)	Media Mix 1	Media Mix 2
Density (g/cm ³)	1.56	1.73	1.41	1.44
Void Ratio	0.67	0.51	0.56	0.62
Porosity	0.40	0.34	0.36	0.38
Specific Gravity (Gs)	2.62	2.62	2.19	2.33
Surface Area (m ² /g)	-	-	0.129	0.242
Permeability (cm/hr)	62.48	4.47	4.38	3.62

Gradation Curve: the soil in vadose zone at Hunters Trace site


Particle-Size Distribution 100.00 90.00 80.00 70.00 Percent Finer 60.00 50.00 40.00 30.00 20.00 10.00 0.00 0.1 0.01 10

Grain Size, D (mm)


Gradation Curve: Media Mix 1


Gradation Curve: Media Mix 2

Six Column Test Setup

Column Test Setup

Column Test Experimentation

- Augmented stormwater Nitrate concentration: 0.38, 1.26, 2.53 mg/L NO₃-N
- Average land use Nitrate values: 1.24 3.1 mg/L NO₃-N (Pitt, 2004)
- Overall average Nitrate: 2.66 mg/L as NO₃-N (Pitt, 2004)

Column Test Experimentation

- Augmented stormwater Orthophosphate concentration 0.125, 0.361, 0.785 mg/L PO₄-P
- Average land use Orthophosphate values: 0.123 - 0.613 mg/L PO₄-P (Pitt, 2004)
- Overall average Orthophosphate 0.40 mg/L PO₄-P (Pitt, 2004)

Column Test Experimentation

- Column test flow rate 10mL per minute
- 1.38 inches per hour
- Typical retention basin infiltration 0.25 2 inches per hour (Wanielista, et.al. 2011)
- 3 runs for each Nitrate and Orthophosphate concentration

Overall Nitrate Reduction

r			
	Initial	Final	
	Concentration	Concentration	
	(mg/L NO3-	(mg/L NO3-	Removal
Control	N) Top	N) Bottom	Efficiency
Column 1,2	Column 1	Column 2	(%)
Average n=3	0.382	0.233	38.9
Average n=3	1.269	0.380	70.0
Average n=3	2.529	1.529	39.5
	Initial	Final	
	Concentration	Concentration	
	(mq/L NO3-	(mq/L NO3-	Removal
Media Mix 1	Ñ) Top	N) Bottom	Efficiency
Column 3,4	Column 3	Column 4	(%)
Average n=3	0.382	0.022	94.2
Average n=3	1.269	0.023	98.2
Average n=3	2.529	0.021	99.2
	Initial	Final	
	Concentration	Concentration	
	(mg/L NO3-	(mg/L NO3-	Removal
Media Mix 2	N) Top	N) Bottom	Efficiency
Column 5,6	Column 5	Column 6	(%)
Average n=3	0.382	0.023	94.1
Average n=3	1.269	0.024	98.1
Average n=3	2.529	0,023	99.1

MEDIA MIX 1

Unsaturated Nitrate Changes

			I
	Initial	Final	
	Concentration	Concentration	
	(mg/L NO3-	(mg/L NO3-	Removal
Control	N) Top	N) Bottom	Efficiency
Column 1	Column 1	Column 1	(%)
Average n=3	0.382	0.626	-63.9
Average n=3	1.269	1.868	-47.3
Average n=3	2.529	2.526	0.1
	Initial	Final	
	Concentration	Concentration	
	(mg/L NO3-	(mg/L NO3-	Removal
Control	N) Top	N) Bottom	Efficiency
Column 3	Column 3	Column 3	(%)
Average n=3	0.382	0.362	5.2
Average n=3	1.269	0.921	27.4
Average n=3	2.529	1.958	22.6
	Initial	Final	
	Concentration	Concentration	
	(mg/L NO3-	(mg/L NO3-	Removal
Control	N) Top	N) Bottom	Efficiency
Column 5	Column 5	Column 5	(%)
Average n=3	0.382	0.141	63.1
Average n=3	1.269	0.268	78.9
Average n=3			

MEDIA MIX 1

Saturated Nitrate Reduction:

DO concentrations at bottom of saturated columns 0.10- 0.19 mg/L

	Initial	Final			
	Concentration	Concentration			
	(mg/L NO3-	(mg/L NO3-	Removal		
Control	N) Top	N) Bottom	Efficiency		
Column 2	Column 2	Column 2	(%)		
Average n=3	0.626	0.233	61.6		
Average n=3	1.868	0.380	79.6		
Average n=3	2.526	1.529	39.5		
	Initial	Final			
	Concentration	Concentration			
	(mg/L NO3-	(mg/L NO3-	Removal		
Media Mix 1	N) Top	N) Bottom	Efficiency		
Column 4	Column 4	Column 4	(%)		
Average n=3	0.362	0.022	93.9		
Average n=3	0.921	0.023	97.4		
Average n=3	1.958	0.021	98.9		
	Initial	Final			
	Concentration	Concentration			
	(mg/L NO3-	(mg/L NO3-	Removal		
Media Mix 2	N) Top	N) Bottom	Efficiency		
Column 6	Column 6	Column 6	(%)		
Average n=3	0.141	0.023	78.0		
			00 7		
Average n=3	0.268	0.024	90.7		

MEDIA MIX 1

Overall Orthophosphate Reduction

-	-	-	
	Initial	Final	
	Concentration	Concentration	
	(mg/L PO4-P)	(mg/L PO4-P)	Removal
Control	Top Column	Bottom	Efficiency
Column 1,2	1	Column 2	(%)
Average n=3	0.125	0.304	-143.1
Average n=3	0.361	0.294	18.7
Average n=3	0.785	0.351	55.2
	Initial	Final	
	Concentration	Concentration	
	(mg/L PO4-P)	(mg/L PO4-P)	Removal
Media Mix 1	Top Column	Bottom	Efficiency
Column 3,4	3	Column 4	(%)
Average n=3	0.125	0.061	51.2
Average n=3	0.361	0.050	86.1
Average n=3	0.785	0.068	91.4
	Initial	Final	
	Concentration	Concentration	
	(mg/L PO4-P)	(mg/L PO4-P)	Removal
Media Mix 2	Top Column	Bottom	Efficiency
Column 5,6	5	Column 6	(%)
Average n=3	0.125	0.084	32.7
Average n=3	0.361	0.058	83.9

MEDIA MIX 1

Literature Review and Lab Summary

Literature Review

Lab Batch Test Experimentation

Material Characterization

Lab Column Test Experimentation

Laboratory Conclusions

- Media Mix 1 and Media Mix 2 are more effective than the control for nutrient reduction
- Wet conditions are necessary for denitrification
- Biosorption media mixes may be used to manage nutrients.

References

- Crites, R.W., 1985. "Micropollutant removal in rapid infiltration", In: Artificial Recharge of Groundwater, ed. Takashi Asano, Boston: Butterworth Publishers, pp. 579-608.
- DeBusk, T. A., Langston, M. A., Schwegler, B. R., and Davidson, S. 1997. "An Evaluation of Filter Media for Treating Stormwater Runoff", Proceedings of the Fifth Biennial Stormwater Research Conference, pp 82-89.
- Kim, H., Seagren, E. A., and Davis, A. P., 2000. "Engineered Bioretention for Removal of Nitrate from Stormwater Runoff", WEFTEC (Water Environment Federation Technical Exhibition) 2000, Water Environment Federation (WEF), Grand Rapids, MI.
- O'Reilly, A. M., et al. 2012, Nutrient Removal using biosorption activated media...Science of the Total Environment, #432.
- Moberg, Mikhal, 2008. Effectiveness of Specifically Designed Filter Media. UCF Thesis, Orlando, Florida
- Phelps, G.G., 2004, "Chemistry of Ground Water in the Silver Springs Basin, Florida, with an Emphasis on Nitrate: U.S. Geological Survey Scientific Investigations Report", 2004-5144, p. 54.

References

- Pitt, R., Maestre, A., 2004. "National Stormwater Quality Database (NSQD, version 1.1)", 1st Annual Stormwater Management Research Symposium Proceedings, October 12-13, 2004.
- Robertson, W. D., Anderson, M. R., 1999. "Nitrogen Removal from Landfill Leachate Using an Infiltration Bed Coupled with a Denitrification Barrier", GWMR, Fall, pp. 73-80.
- Robertson, W. D., Cherry, J., A., 1995. "In Situ Denitrification of Septic-System Nitrate Using Reactive Porous Media Barriers", Ground Water, Vol.33, no. 1, pp. 99-111.
- Sengupta, S. and Ergas, S. J., 2006. "Autotrophic Biological Denitrification with Elemental Sulfur or Hydrogen for Complete Removal of Nitrate-Nitrogen from a Septic System Wastewater", Final Report Submitted to The NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET), August
- Wanielista, et.al. 2011. Nitrogen Transformation beneath Stormwater Retention Basins in Karst Areas... FDEP S0316.
- USGS, 2008. "Florida Springs Interdisciplinary Science Study", <u>http://fl.water.usgs.gov/PDF_files/fs008_03_katz.pdf</u>, Date accessed: January 2008.

BAM PART 1 Literature and Laboratory Questions and Comments Contact Marty Wanielista martin.Wanielista@ucf.edu

Information abstracted from student theses, dissertations and refereed publications at UCF.