

BMPTRAINS MODEL: A TRAINING WORKSHOP

BY: MARTY WANIELISTA, HARVEY HARPER, ERIC LIVINGSTON AND MIKE HARDIN.

PURPOSE OF TRAINING IS TO:

- Understand the theory essential for estimating annual nutrient mass removal.
- Understand the basis of removal for 15 Stormwater Best Management Practices.
- Define input data required for the BMPTRAINS program.
- Use BMPTRAINS for the selection of stormwater best management practices.

Credit and thanks to: Mike Hardin, Dr. Harvey Harper, Dr. Ikiensinma Gogo-Abite and Chris Kuzlo

BMPTRAINS MODEL AND USERS MANUAL

BMPTRAINS: an EXCEL based model for sizing BMPs and estimating annual removal effectiveness.

It's name is derived from the analysis of stormwater BMPs in series.

The model is used to evaluate <u>B</u>est <u>M</u>anagement <u>P</u>ractice <u>T</u>reatment options for <u>R</u>emoval on an <u>A</u>nnual basis by those <u>I</u>nterested in <u>N</u>utrients in <u>S</u>tormwater.

Available from: www.stormwater.ucf.edu

What's New

BMPTRAINS Stormwater Best Management Practices Analysis Model (Version 7.4) Registration, Model, and User's Manual

LITERATURE REVIEW FROM THE USER'S MANUAL

NAVIGATING the BMP Nutrient Model BMPTRAINS

NOTE: the HELP button on a page will take you to information related to that page

RAINFALL AND TYPE OF EFFECTIVENESS ANALYSIS

RAINFALL DISTRIBUTIONS

 Rainfall distributions are regionally different.

WATERSHEDS CATCHMENT INPUTS

WATERSHED CHARACTERISTICS		GO TO STORMWATER TREATEMENT ANALYSIS				
SELECT CATCHMENT CONFIGURATION		CLICK ON CELL BELOW TO SELECT CONFIGURATION				JRATION
CATCHMENT NO.1 CHARACTERISTICS:		\ If mixed land uses (side calculation)				
	CLICK ON CELL BELOW TO SE	LECT	Land use	Area Acres	non DCIA CN	%DCIA
Pre-development land use:	Multi-Family: TN=2.230 TP=0.	520	\leftarrow			
with default EMCs	CLICK ON CELL BELOW TO SE	LECT				
Post-development land use:	Highway: TN=1.640 TP=0.22	0				
with default EMCs			Total			
Total pre-development catchment area:		0.55	AC			
Total post-development catchment or BMP analysis area:		0.55	AC			
Pre-development Non DCIA CN:		80.00				
Pre-development DCIA percentage:		0.00	%			
Post-development Non DCIA CN:		80.00		_		
Post-development DCIA percentage:		100.00	%			
Estimated Area of BMP (used for rainfall excess not loadings)		0.03	AC			

WATERSHEDS

CATCHMENT CONFIGURATIONS

EMC DEFAULT VALUES AS OF JUNE 3, 2013

	Event Mean Concentration (mg/l)		
CATEGORY	TOTAL Nitrogen	TOTAL Phosphorus	
Low-Density Residential ¹	1.51	0.178	
Single-Family	1.87	0.301	
Multi-Family	2.1	0.497	
Low-Intensity Commercial	1.07	0.179	
High-Intensity Commercial	2.2	0.248	
Light Industrial	1.19	0.213	
Highway	1.37	0.167	
Agricultural - Pasture	3.3	0.621	
Agricultural - Citrus	2.07	0.152	
Agricultural - Row Crops	2.46	0.489	
Agricultural - General Agriculture ²	2.79	0.431	
Undeveloped	1.15	0.055	
Mining / Extractive	1.18	0.15	
. Average of single-family and undeveloped loading rates			

METHODOLOGIES: Effectiveness based on annual removals

HISTOGRAM OF RAINFALL VOLUMES

Most Rainfall Data are hourly based and for 30 years, up to 2005 There are regional differences affecting treatment efficiency

Example Demonstration Retention in Series

Retention depth over the watershed area is 1.43 inches for the watershed conditions and rainfall zone.

BUT not sufficient area for one retention basin But may use 3 BMPs for each catchment in Series in one Watershed

NOTE: This is the effectiveness curve if pervious pave is only used. Retention depth over the area is 0.60 inches For a pervious pavement with reservoir.

Example 3 BMPs in Series in one Watershed

2nd BMP in series is exfiltration @ 0.5 inch treatment

NOTE: This is the effectiveness curve if exfiltration is only used. Retention depth over the equivalent impervious area is 0.50 inches for an exfiltration system.

FOR RETENTION STAY TRUE TO THE UNDERLYING PRINCIPLES

Annual effectiveness is **not** the sum of the two efficiencies (50+40= 90%) It is however the annual effectiveness at 1.1 inch retention or 70%.

BMP TREATMENT TRAIN CREDITS WHEN THREE EFFICIENCIES ARE IN SERIES

M = 100 [$1 - {(1-0.5)(1-0.4)(1-.33)}$] = 100[1 - .20] = 80 % removed

NOT 50+40+33.3=123.3%

NOTES 1. Example flow diagram for this problem only.

2. There was no input or additional catchment flow between BMPs

15 BMPS AND ONE USER DEFINED

STEP 2: Select one of the systems below to analyze efficiency.					
RETENTION BASIN	WET DETENTION	EXFILTRATION TRENCH	RAIN (BIO) GARDEN	SWALE	USER DEFINED BMP
PERVIOUS PAVEMENT	STORMWATER HARVESTING	FILTRATION including BIOFILTRATION	Lined Reuse Pond & Underdrain Input	 NOTE !!!: All individual system must be sized prior to being analyzed in conjunction with other systems. Please read instructions in the MULTIPLE WATERSHEDS AND TREATMENT SYSTEMS ANALYSIS tab for more information. 	
GREENROOF	RAINWATER HARVESTING	FLOATING ISLANDS WITH WET DETENTION			
VEGETATED NATURAL BUFFER	VEGETATED FILTER STRIP	VEGETATED AREA Example tree well	CATCHMENT AND TREATMENT SUMMARY RESULTS		

USER DEFINED BMP

STARTING WORKSHEET

Name of BMP Contributing catchment area: Required treatment efficiency (Nitrogen): Required treatment efficiency (**Phosphorus**): Is this a retention or other system*? If retention, storage depth is: The calculated storage volume is: Treatment efficiency (Nitrogen): Treatment efficiency (Phosphorus): Provided treatment efficiency (Nitrogen): Provided treatment efficiency (Phosphorus): Examples of other systems are street sweeping, dry detention, chemical treatment, and pre-treatment devices

Enter a short description of BMP below (no more than 200 characters)

	9.500
TBD	
TBD	
	0.000

INPUT EXAMPLE

Name of BMP	pre treatment
Contributing catchment area:	9.500
Required treatment efficiency (Nitrogen):	TBD
Required treatment efficiency (Phosphorus):	твр
s this a retention or other system*?	Retention
f retention, storage depth is:	0.250
he calculated storage volume is:	0.198
reatment efficiency (Nitrogen):	43.400
reatment efficiency (Phosphorus):	43.400

USER DEFINED BMP

STARTING WORKSHEET

Name of BMP

Contributing catchment area:

Required treatment efficiency (Nitrogen):

Required treatment efficiency (**Phosphorus**):

Is this a retention or other system*?

If retention, storage depth is:

The calculated storage volume is:

Treatment efficiency (Nitrogen):

Treatment efficiency (Phosphorus):

Provided treatment efficiency (Nitrogen):

Provided treatment efficiency (Phosphorus):

* Examples of other systems are street sweeping, dry detention, chemical treatment, and pre-treatment devices

Enter a short description of BMP below (no more than 200 characters)

9.500
0.000

INPUT EXAMPLE

Name of BMP	UpFlow Filters
Contributing catchment area:	9.500
Required treatment efficiency (Nitrogen):	TBD
Required treatment efficiency (Phosphorus):	TBD
Is this a retention or other system*?	Other
If retention, storage depth is:	0.250
The calculated storage volume is:	0.198
Provided treatment efficiency (Nitrogen):	54.00
Provided treatment efficiency (Phosphorus):	67.00

Learning Summary

- 1. BMPTRAINS model is used to size treatment systems based on an average annual effectiveness. It is available at no cost to the users.
- 2. The average annual effectiveness is site specific incorporating rainfall conditions, impervious cover, soil conditions, type of land use, and type of BMP.
- 3. BMPs can be analyzed in either series or parallel structure. The estimates stay "true" to the underlying rainfall and catchment conditions.

QUESTIONS, REMARKS AND DISCUSSION

THANK YOU!

